These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


141 related items for PubMed ID: 20419248

  • 1. Facility monitoring of toxic industrial compounds in air using an automated, fieldable, miniature mass spectrometer.
    Smith JN, Keil A, Likens J, Noll RJ, Cooks RG.
    Analyst; 2010 May; 135(5):994-1003. PubMed ID: 20419248
    [Abstract] [Full Text] [Related]

  • 2. Monitoring of toxic compounds in air using a handheld rectilinear ion trap mass spectrometer.
    Keil A, Hernandez-Soto H, Noll RJ, Fico M, Gao L, Ouyang Z, Cooks RG.
    Anal Chem; 2008 Feb 01; 80(3):734-41. PubMed ID: 18181580
    [Abstract] [Full Text] [Related]

  • 3. Direct monitoring of toxic compounds in air using a portable mass spectrometer.
    Mulligan CC, Justes DR, Noll RJ, Sanders NL, Laughlin BC, Cooks RG.
    Analyst; 2006 Apr 01; 131(4):556-67. PubMed ID: 16568173
    [Abstract] [Full Text] [Related]

  • 4. Ion/molecule reactions for detecting ammonia using miniature cylindrical ion trap mass spectrometers.
    Smith JN, Keil AD, Noll RJ, Cooks RG.
    Analyst; 2011 Jan 07; 136(1):120-7. PubMed ID: 20976316
    [Abstract] [Full Text] [Related]

  • 5. Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer.
    Smith JN, Noll RJ, Cooks RG.
    Rapid Commun Mass Spectrom; 2011 May 30; 25(10):1437-44. PubMed ID: 21504010
    [Abstract] [Full Text] [Related]

  • 6. Detection and classification of gaseous sulfur compounds by solid electrolyte cyclic voltammetry of cermet sensor array.
    Kramer KE, Rose-Pehrsson SL, Hammond MH, Tillett D, Streckert HH.
    Anal Chim Acta; 2007 Feb 12; 584(1):78-88. PubMed ID: 17386588
    [Abstract] [Full Text] [Related]

  • 7. Development of an automated cylindrical ion trap mass spectrometer for the determination of atmospheric volatile organic compounds.
    Edwards GD, Shepson PB, Grossenbacher JW, Wells JM, Patterson GE, Barket DJ, Pressley S, Karl T, Apel E.
    Anal Chem; 2007 Jul 01; 79(13):5040-50. PubMed ID: 17542557
    [Abstract] [Full Text] [Related]

  • 8. Analysis of gaseous toxic industrial compounds and chemical warfare agent simulants by atmospheric pressure ionization mass spectrometry.
    Cotte-Rodríguez I, Justes DR, Nanita SC, Noll RJ, Mulligan CC, Sanders NL, Cooks RG.
    Analyst; 2006 Apr 01; 131(4):579-89. PubMed ID: 16568176
    [Abstract] [Full Text] [Related]

  • 9. Breaking the pumping speed barrier in mass spectrometry: discontinuous atmospheric pressure interface.
    Gao L, Cooks RG, Ouyang Z.
    Anal Chem; 2008 Jun 01; 80(11):4026-32. PubMed ID: 18461971
    [Abstract] [Full Text] [Related]

  • 10. Demonstration of proton-transfer reaction time-of-flight mass spectrometry for real-time analysis of trace volatile organic compounds.
    Blake RS, Whyte C, Hughes CO, Ellis AM, Monks PS.
    Anal Chem; 2004 Jul 01; 76(13):3841-5. PubMed ID: 15228364
    [Abstract] [Full Text] [Related]

  • 11. Ambient mass spectrometry with a handheld mass spectrometer at high pressure.
    Keil A, Talaty N, Janfelt C, Noll RJ, Gao L, Ouyang Z, Cooks RG.
    Anal Chem; 2007 Oct 15; 79(20):7734-9. PubMed ID: 17867653
    [Abstract] [Full Text] [Related]

  • 12. Design and characterization of a multisource hand-held tandem mass spectrometer.
    Gao L, Sugiarto A, Harper JD, Cooks RG, Ouyang Z.
    Anal Chem; 2008 Oct 01; 80(19):7198-205. PubMed ID: 18754674
    [Abstract] [Full Text] [Related]

  • 13. Direct sampling of chemical weapons in water by photoionization mass spectrometry.
    Syage JA, Cai SS, Li J, Evans MD.
    Anal Chem; 2006 May 01; 78(9):2967-76. PubMed ID: 16642982
    [Abstract] [Full Text] [Related]

  • 14. The combined use of thermal desorption and selected ion flow tube mass spectrometry for the quantification of xylene and toluene in air.
    Ross BM, Vermeulen N.
    Rapid Commun Mass Spectrom; 2007 May 01; 21(22):3608-12. PubMed ID: 17939161
    [Abstract] [Full Text] [Related]

  • 15. Miniaturized system of a gas chromatograph coupled with a Paul ion trap mass spectrometer.
    Shortt BJ, Darrach MR, Holland PM, Chutjian A.
    J Mass Spectrom; 2005 Jan 01; 40(1):36-42. PubMed ID: 15619267
    [Abstract] [Full Text] [Related]

  • 16. Solid phase micro-extraction in a miniature ion trap mass spectrometer.
    Riter LS, Meurer EC, Cotte-Rodriguez I, Eberlin MN, Cooks RG.
    Analyst; 2003 Sep 01; 128(9):1119-22. PubMed ID: 14529017
    [Abstract] [Full Text] [Related]

  • 17. A miniature condensed-phase membrane introduction mass spectrometry (CP-MIMS) probe for direct and on-line measurements of pharmaceuticals and contaminants in small, complex samples.
    Duncan KD, Willis MD, Krogh ET, Gill CG.
    Rapid Commun Mass Spectrom; 2013 Jun 15; 27(11):1213-21. PubMed ID: 23650034
    [Abstract] [Full Text] [Related]

  • 18. Characterization of particle- and vapor-phase organic fraction emissions from a heavy-duty diesel engine equipped with a particle trap and regeneration controls.
    Bagley ST, Gratz LD, Leddy DG, Johnson JH.
    Res Rep Health Eff Inst; 1993 Jul 15; (56):1-121; discussion 123-35. PubMed ID: 8216968
    [Abstract] [Full Text] [Related]

  • 19. Automated measurement and calibration of reactive volatile halogenated organic compounds in the atmosphere.
    Wevill DJ, Carpenter LJ.
    Analyst; 2004 Jul 15; 129(7):634-8. PubMed ID: 15213832
    [Abstract] [Full Text] [Related]

  • 20. A chemical potential driven micro-membrane sampler and its application for the determination of trace carbonyl compounds in air.
    Luo X, Wang Y, Zhang L, He G, Zhang W, Du Y.
    Talanta; 2010 Oct 15; 82(5):1802-8. PubMed ID: 20875580
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.