These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
336 related items for PubMed ID: 20423679
1. The NF-kappaB signaling in cystic fibrosis lung disease: pathophysiology and therapeutic potential. Bodas M, Vij N. Discov Med; 2010 Apr; 9(47):346-56. PubMed ID: 20423679 [Abstract] [Full Text] [Related]
2. Protein processing and inflammatory signaling in Cystic Fibrosis: challenges and therapeutic strategies. Belcher CN, Vij N. Curr Mol Med; 2010 Feb; 10(1):82-94. PubMed ID: 20205681 [Abstract] [Full Text] [Related]
3. Selective inhibition of endoplasmic reticulum-associated degradation rescues DeltaF508-cystic fibrosis transmembrane regulator and suppresses interleukin-8 levels: therapeutic implications. Vij N, Fang S, Zeitlin PL. J Biol Chem; 2006 Jun 23; 281(25):17369-17378. PubMed ID: 16621797 [Abstract] [Full Text] [Related]
4. Effects of cystic fibrosis transmembrane conductance regulator and DeltaF508CFTR on inflammatory response, ER stress, and Ca2+ of airway epithelia. Hybiske K, Fu Z, Schwarzer C, Tseng J, Do J, Huang N, Machen TE. Am J Physiol Lung Cell Mol Physiol; 2007 Nov 23; 293(5):L1250-60. PubMed ID: 17827250 [Abstract] [Full Text] [Related]
6. Localization of cystic fibrosis transmembrane conductance regulator to lipid rafts of epithelial cells is required for Pseudomonas aeruginosa-induced cellular activation. Kowalski MP, Pier GB. J Immunol; 2004 Jan 01; 172(1):418-25. PubMed ID: 14688350 [Abstract] [Full Text] [Related]
7. Resistance to Pseudomonas aeruginosa chronic lung infection requires cystic fibrosis transmembrane conductance regulator-modulated interleukin-1 (IL-1) release and signaling through the IL-1 receptor. Reiniger N, Lee MM, Coleman FT, Ray C, Golan DE, Pier GB. Infect Immun; 2007 Apr 01; 75(4):1598-608. PubMed ID: 17283089 [Abstract] [Full Text] [Related]
8. Inflammation in cystic fibrosis airways: relationship to increased bacterial adherence. Scheid P, Kempster L, Griesenbach U, Davies JC, Dewar A, Weber PP, Colledge WH, Evans MJ, Geddes DM, Alton EW. Eur Respir J; 2001 Jan 01; 17(1):27-35. PubMed ID: 11307750 [Abstract] [Full Text] [Related]
9. Regulation of gap junctional communication by a pro-inflammatory cytokine in cystic fibrosis transmembrane conductance regulator-expressing but not cystic fibrosis airway cells. Chanson M, Berclaz PY, Scerri I, Dudez T, Wernke-Dollries K, Pizurki L, Pavirani A, Fiedler MA, Suter S. Am J Pathol; 2001 May 01; 158(5):1775-84. PubMed ID: 11337375 [Abstract] [Full Text] [Related]
10. Activation of NF-kappaB in airway epithelial cells is dependent on CFTR trafficking and Cl- channel function. Weber AJ, Soong G, Bryan R, Saba S, Prince A. Am J Physiol Lung Cell Mol Physiol; 2001 Jul 01; 281(1):L71-8. PubMed ID: 11404248 [Abstract] [Full Text] [Related]
16. Infection of polarized airway epithelial cells by normal and small-colony variant strains of Staphylococcus aureus is increased in cells with abnormal cystic fibrosis transmembrane conductance regulator function and is influenced by NF-κB. Mitchell G, Grondin G, Bilodeau G, Cantin AM, Malouin F. Infect Immun; 2011 Sep 14; 79(9):3541-51. PubMed ID: 21708986 [Abstract] [Full Text] [Related]
19. Cystic fibrosis transmembrane conductance regulator controls lung proteasomal degradation and nuclear factor-kappaB activity in conditions of oxidative stress. Boncoeur E, Roque T, Bonvin E, Saint-Criq V, Bonora M, Clement A, Tabary O, Henrion-Caude A, Jacquot J. Am J Pathol; 2008 May 14; 172(5):1184-94. PubMed ID: 18372427 [Abstract] [Full Text] [Related]