These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


129 related items for PubMed ID: 204284

  • 1. Functional behaviour of isolated heart muscle mitochondria after in situ ischemia. Polarographic analysis of mitochondrial oxidative phosphorylation.
    Kahles H, Göring GG, Nordbeck H, Preusse CJ, Spieckermann PG.
    Basic Res Cardiol; 1977; 72(6):563-74. PubMed ID: 204284
    [Abstract] [Full Text] [Related]

  • 2. The role of ATP and lactic acid for mitochondrial function during myocardial ischemia.
    Kahles H, Gebhard MM, Mezger VA, Nordbeck H, Preusse CJ, Spieckermann PG.
    Basic Res Cardiol; 1979; 74(6):611-20. PubMed ID: 44843
    [Abstract] [Full Text] [Related]

  • 3. Oxidative phosphorylation in isolated canine myocardial mitochondria. Effects of in vitro volume dilution, lactate, phosphate, and calcium addition, and lactic acidosis.
    Mukherjee A, Wong TM, Buja LM, Willerson JT.
    Adv Myocardiol; 1980; 2():339-47. PubMed ID: 6252587
    [Abstract] [Full Text] [Related]

  • 4. Influence of volume dilution, lactate, phosphate, and calcium on mitochondrial functions.
    Mukherjee A, Wong TM, Templeton G, Buja LM, Willerson JT.
    Am J Physiol; 1979 Aug; 237(2):H224-38. PubMed ID: 37745
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. The effect of lactate infusion on myocardial metabolism and ventricular function following ischemia and cardioplegia.
    Teoh KH, Mickle DA, Weisel RD, Madonik MM, Ivanov J, Harding RD, Romaschin AD, Wilson GJ, Mullen JC.
    Can J Cardiol; 1990 Aug; 6(1):38-46. PubMed ID: 2310994
    [Abstract] [Full Text] [Related]

  • 7. Protection of mitochondrial function during ischemia by potassium cardioplegia: correlation with ischemic contracture.
    Sink JD, Pellom GL, Currie WD, Chitwood WR, Hill RC, Wechsler AS.
    Circulation; 1979 Aug; 60(2 Pt 2):158-63. PubMed ID: 221134
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Normothermic ischemic cardiac arrest of the isolated working rat heart. Effects of time and reperfusion on myocardial ultrastructure, mitochondrial oxidative function, and mechanical recovery.
    Edoute Y, van der Merwe E, Sanan D, Kotzé JC, Steinmann C, Lochner A.
    Circ Res; 1983 Nov; 53(5):663-78. PubMed ID: 6627616
    [Abstract] [Full Text] [Related]

  • 11. The relationship of regional coronary blood flow to mitochondrial function during reperfusion of the ischemic myocardium.
    Weishaar R, Tschurtschenthaler GV, Ashikawa K, Bing RJ.
    Cardiology; 1979 Nov; 64(6):350-64. PubMed ID: 509423
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis.
    Rouslin W.
    Am J Physiol; 1983 Jun; 244(6):H743-8. PubMed ID: 6305212
    [Abstract] [Full Text] [Related]

  • 14. Relationship between oxidative phosphorylation and adenine nucleotide translocase activity of two populations of cardiac mitochondria and mechanical recovery of ischemic hearts following reperfusion.
    Duan J, Karmazyn M.
    Can J Physiol Pharmacol; 1989 Jul; 67(7):704-9. PubMed ID: 2548694
    [Abstract] [Full Text] [Related]

  • 15. Regional changes in mitochondrial respiration in acute myocardial ischemia. Comparison of the inner and outer heart muscles.
    Minatoguchi H, Sekita S, Yokoyama M, Katagiri T.
    Jpn Heart J; 1984 Jul; 25(4):609-21. PubMed ID: 6094879
    [Abstract] [Full Text] [Related]

  • 16. Studies on prolonged acute regional ischemia. II. Implications of progression from dyskinesia to akinesia in the ischemic segment.
    Beyersdorf F, Okamoto F, Buckberg GD, Sjöstrand F, Allen BS, Acar C, Young HH, Bugyi HI.
    J Thorac Cardiovasc Surg; 1989 Aug; 98(2):224-33. PubMed ID: 2755155
    [Abstract] [Full Text] [Related]

  • 17. Effect of ischemic preconditioning on mitochondrial oxidative phosphorylation and high energy phosphates in rat hearts.
    Kobara M, Tatsumi T, Matoba S, Yamahara Y, Nakagawa C, Ohta B, Matsumoto T, Inoue D, Asayama J, Nakagawa M.
    J Mol Cell Cardiol; 1996 Feb; 28(2):417-28. PubMed ID: 8729072
    [Abstract] [Full Text] [Related]

  • 18. Myocardial ischemia decreases oxidative phosphorylation through cytochrome oxidase in subsarcolemmal mitochondria.
    Lesnefsky EJ, Tandler B, Ye J, Slabe TJ, Turkaly J, Hoppel CL.
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1544-54. PubMed ID: 9321848
    [Abstract] [Full Text] [Related]

  • 19. Biochemical studies: failure of tissue adenosine triphosphate levels to predict recovery of contractile function after controlled reperfusion.
    Rosenkranz ER, Okamoto F, Buckberg GD, Vinten-Johansen J, Allen BS, Leaf J, Bugyi H, Young H, Barnard RJ.
    J Thorac Cardiovasc Surg; 1986 Sep; 92(3 Pt 2):488-501. PubMed ID: 3747577
    [Abstract] [Full Text] [Related]

  • 20. Kinetic analysis of changes in activity of heart mitochondrial oxidative phosphorylation system induced by ischemia.
    Borutaite V, Morkuniene R, Budriunaite A, Krasauskaite D, Ryselis S, Toleikis A, Brown GC.
    J Mol Cell Cardiol; 1996 Oct; 28(10):2195-201. PubMed ID: 8930814
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.