These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
129 related items for PubMed ID: 204284
41. Oxidative phosphorylation rate: an index for evaluation of mitochondrial function in myocardial ischaemia. Edoute Y, Kotzé JC, Lochner A. J Mol Cell Cardiol; 1979 Aug; 11(8):831-3. PubMed ID: 490658 [No Abstract] [Full Text] [Related]
42. Effects of temperature on myocardial calcium homeostasis and mitochondrial function during ischemia and reperfusion. Ferrari R, Raddino R, Di Lisa F, Ceconi C, Curello S, Albertini A, Nayler W. J Thorac Cardiovasc Surg; 1990 May; 99(5):919-28. PubMed ID: 2329831 [Abstract] [Full Text] [Related]
43. Functional and metabolic protection of the neonatal myocardium from ischemia. Insufficient protection by cardioplegia. Watanabe H, Yokosawa T, Eguchi S, Imai S. J Thorac Cardiovasc Surg; 1989 Jan; 97(1):50-8. PubMed ID: 2911197 [Abstract] [Full Text] [Related]
44. Changes in myocardial high-energy phosphate stores and carbohydrate metabolism during intermittent aortic crossclamping in dogs on cardiopulmonary bypass at 34 degrees and 25 degrees C. van der Veen FH, van der Vusse GJ, Willemsen P, Kruger RT, van der Nagel T, Coumans WA, Reneman RS. J Thorac Cardiovasc Surg; 1990 Sep; 100(3):389-99. PubMed ID: 2095756 [Abstract] [Full Text] [Related]
45. Enhancement of mitochondrial oxidative phosphorylation capability by hypoperfusion in isolated perfused rat heart. Pelikan PC, Niemann JT, Xia GZ, Jagels G, Criley JM. Circ Res; 1987 Dec; 61(6):880-8. PubMed ID: 3677342 [Abstract] [Full Text] [Related]
46. [Kinetic differences in the oxidative phosphorylation system of control and ischemia-damaged heart mitochondria]. Toleĭkis AI, Bakshite LI, Borutaĭte VI, Prashkiavichius AK. Biull Eksp Biol Med; 1984 Jul; 98(7):31-3. PubMed ID: 6466823 [Abstract] [Full Text] [Related]
52. Protection of canine cardiac mitochondrial function by verapamil-cardioplegia during ischemic arrest. Yoon SB, McMillin-Wood JB, Michael LH, Lewis RM, Entman ML. Circ Res; 1985 May; 56(5):704-8. PubMed ID: 3995698 [Abstract] [Full Text] [Related]
53. Changes in energy transduction efficiency in mitochondria isolated from ischemic myocardium. Toleikis A, Dzeja P, Praskevicius A. Adv Myocardiol; 1980 May; 2():327-37. PubMed ID: 7423049 [Abstract] [Full Text] [Related]
54. Relationship between hemodynamics during immediate reperfusion and mitochondrial functional recovery in the ischemic myocardium. Sunamori M, Suzuki A, Harrison CE. Jpn Circ J; 1981 Nov; 45(11):1280-90. PubMed ID: 7300008 [No Abstract] [Full Text] [Related]
55. Quantitative evaluation of relationship between cardiac energy metabolism and post-ischemic recovery of contractile function. Saks VA, Kapelko VI, Kupriyanov VV, Kuznetsov AV, Lakomkin VL, Veksler VI, Sharov VG, Javadov SA, Seppet EK, Kairane C. J Mol Cell Cardiol; 1989 Feb; 21 Suppl 1():67-78. PubMed ID: 2733031 [Abstract] [Full Text] [Related]
56. Myocardial respiration and edema following hypothermic cardioplegia and anoxic arrest. Sunamori M, Harrison CE. J Thorac Cardiovasc Surg; 1979 Aug; 78(2):208-16. PubMed ID: 459528 [Abstract] [Full Text] [Related]
57. On the mechanism of action of the antianginal drug nonachlazine on ischemic myocardium. Kaverina NV, Turilova AI, Rozonov YuB, Azvolinskaya TN, Kryzhanovsky SA. Adv Myocardiol; 1983 Aug; 4():575-87. PubMed ID: 6856982 [Abstract] [Full Text] [Related]
58. Prevention of reperfusional damage from ischemic myocardium. Kao RL, Magovern GJ. J Thorac Cardiovasc Surg; 1986 Jan; 91(1):106-14. PubMed ID: 3941553 [Abstract] [Full Text] [Related]