These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Predicting spontaneous termination of atrial fibrillation using the surface ECG. Nilsson F, Stridh M, Bollmann A, Sörnmo L. Med Eng Phys; 2006 Oct; 28(8):802-8. PubMed ID: 16442328 [Abstract] [Full Text] [Related]
12. Predicting initiation and termination of atrial fibrillation from the ECG. Hayn D, Kollmann A, Schreier G. Biomed Tech (Berl); 2007 Feb; 52(1):5-10. PubMed ID: 17313327 [Abstract] [Full Text] [Related]
13. An automatic system for the analysis and classification of human atrial fibrillation patterns from intracardiac electrograms. Nollo G, Marconcini M, Faes L, Bovolo F, Ravelli F, Bruzzone L. IEEE Trans Biomed Eng; 2008 Sep; 55(9):2275-85. PubMed ID: 18713697 [Abstract] [Full Text] [Related]
16. Detecting ventricular fibrillation by time-delay methods. Amann A, Tratnig R, Unterkofler K. IEEE Trans Biomed Eng; 2007 Jan; 54(1):174-7. PubMed ID: 17260872 [Abstract] [Full Text] [Related]
17. Performance evaluation of a right atrial automatic capture verification algorithm using two different sensing configurations. Sperzel J, Goetze S, Kennergren C, Biffi M, Brooke MJ, Vireca E, Saha S, Schubert B, Butter C. Pacing Clin Electrophysiol; 2009 May; 32(5):579-87. PubMed ID: 19422578 [Abstract] [Full Text] [Related]
18. Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators. Amann A, Tratnig R, Unterkofler K. Biomed Eng Online; 2005 Oct 27; 4():60. PubMed ID: 16253134 [Abstract] [Full Text] [Related]
19. Prediction of atrial fibrillation in patients with cardiac dysfunctions: P wave signal-averaged ECG and chemoreflexsensitivity in atrial fibrillation. Budeus M, Hennersdorf M, Felix O, Reimert K, Perings C, Wieneke H, Erbel R, Sack S. Europace; 2007 Aug 27; 9(8):601-7. PubMed ID: 17507361 [Abstract] [Full Text] [Related]
20. Automatic motion and noise artifact detection in Holter ECG data using empirical mode decomposition and statistical approaches. Lee J, McManus DD, Merchant S, Chon KH. IEEE Trans Biomed Eng; 2012 Jun 27; 59(6):1499-506. PubMed ID: 22086485 [Abstract] [Full Text] [Related] Page: [Next] [New Search]