These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose. Yu L, Xu M, Tang IC, Yang ST. Biotechnol Bioeng; 2015 Oct; 112(10):2134-41. PubMed ID: 25894463 [Abstract] [Full Text] [Related]
25. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose. Fu H, Yu L, Lin M, Wang J, Xiu Z, Yang ST. Metab Eng; 2017 Mar; 40():50-58. PubMed ID: 28040464 [Abstract] [Full Text] [Related]
27. Adaptive evolution for fast growth on glucose and the effects on the regulation of glucose transport system in Clostridium tyrobutyricum. Jiang L, Li S, Hu Y, Xu Q, Huang H. Biotechnol Bioeng; 2012 Mar; 109(3):708-18. PubMed ID: 21956266 [Abstract] [Full Text] [Related]
30. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from undetoxified corncob acid hydrolysate. Suo Y, Liao Z, Qu C, Fu H, Wang J. Bioresour Technol; 2019 Jan; 271():266-273. PubMed ID: 30278351 [Abstract] [Full Text] [Related]
31. Continuous hydrogen and butyric acid fermentation by immobilized Clostridium tyrobutyricum ATCC 25755: effects of the glucose concentration and hydraulic retention time. Mitchell RJ, Kim JS, Jeon BS, Sang BI. Bioresour Technol; 2009 Nov; 100(21):5352-5. PubMed ID: 19545998 [Abstract] [Full Text] [Related]
32. Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor. Wei D, Liu X, Yang ST. Bioresour Technol; 2013 Feb; 129():553-60. PubMed ID: 23270719 [Abstract] [Full Text] [Related]
33. Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum. Wu Z, Yang ST. Biotechnol Bioeng; 2003 Apr 05; 82(1):93-102. PubMed ID: 12569628 [Abstract] [Full Text] [Related]
34. Tailoring the Oxidative Stress Tolerance of Clostridium tyrobutyricum CCTCC W428 by Introducing Trehalose Biosynthetic Capability. Wu Q, Zhu L, Xu Q, Huang H, Jiang L, Yang ST. J Agric Food Chem; 2017 Oct 11; 65(40):8892-8901. PubMed ID: 28925260 [Abstract] [Full Text] [Related]
35. Adaptation of Clostridium tyrobutyricum for enhanced tolerance to butyric acid in a fibrous-bed bioreactor. Zhu Y, Yang ST. Biotechnol Prog; 2003 Oct 11; 19(2):365-72. PubMed ID: 12675573 [Abstract] [Full Text] [Related]
36. Butyric acid production from spent coffee grounds by engineered Clostridium tyrobutyricum overexpressing galactose catabolism genes. He F, Qin S, Yang Z, Bai X, Suo Y, Wang J. Bioresour Technol; 2020 May 11; 304():122977. PubMed ID: 32062499 [Abstract] [Full Text] [Related]
38. Effects of copper on germination, growth and sporulation of Clostridium tyrobutyricum. Mato Rodriguez L, Alatossava T. Food Microbiol; 2010 May 11; 27(3):434-7. PubMed ID: 20227610 [Abstract] [Full Text] [Related]
39. Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing Class I heat shock protein GroESL. Suo Y, Fu H, Ren M, Yang X, Liao Z, Wang J. Bioresour Technol; 2018 Feb 11; 250():691-698. PubMed ID: 29220814 [Abstract] [Full Text] [Related]
40. Direct conversion of untreated cane molasses into butyric acid by engineered Clostridium tyrobutyricum. Guo X, Fu H, Feng J, Hu J, Wang J. Bioresour Technol; 2020 Apr 11; 301():122764. PubMed ID: 31958691 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]