These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


238 related items for PubMed ID: 20433153

  • 1. Electrochemical detection of microRNAs via gap hybridization assay.
    Pöhlmann C, Sprinzl M.
    Anal Chem; 2010 Jun 01; 82(11):4434-40. PubMed ID: 20433153
    [Abstract] [Full Text] [Related]

  • 2. Bioluminescence-based detection of microRNA, miR21 in breast cancer cells.
    Cissell KA, Rahimi Y, Shrestha S, Hunt EA, Deo SK.
    Anal Chem; 2008 Apr 01; 80(7):2319-25. PubMed ID: 18302417
    [Abstract] [Full Text] [Related]

  • 3. An electrochemical signal 'off-on' sensing platform for microRNA detection.
    Yin H, Zhou Y, Chen C, Zhu L, Ai S.
    Analyst; 2012 Mar 21; 137(6):1389-95. PubMed ID: 22311172
    [Abstract] [Full Text] [Related]

  • 4. A universal nucleic acid sequence biosensor with nanomolar detection limits.
    Baeumner AJ, Pretz J, Fang S.
    Anal Chem; 2004 Feb 15; 76(4):888-94. PubMed ID: 14961717
    [Abstract] [Full Text] [Related]

  • 5. Esterase 2-oligodeoxynucleotide conjugates as sensitive reporter for electrochemical detection of nucleic acid hybridization.
    Wang Y, Stanzel M, Gumbrecht W, Humenik M, Sprinzl M.
    Biosens Bioelectron; 2007 Mar 15; 22(8):1798-806. PubMed ID: 17046234
    [Abstract] [Full Text] [Related]

  • 6. Direct quantification of single-molecules of microRNA by total internal reflection fluorescence microscopy.
    Chan HM, Chan LS, Wong RN, Li HW.
    Anal Chem; 2010 Aug 15; 82(16):6911-8. PubMed ID: 20704380
    [Abstract] [Full Text] [Related]

  • 7. Detection of microRNA by fluorescence amplification based on cation-exchange in nanocrystals.
    Li J, Schachermeyer S, Wang Y, Yin Y, Zhong W.
    Anal Chem; 2009 Dec 01; 81(23):9723-9. PubMed ID: 19831385
    [Abstract] [Full Text] [Related]

  • 8. A reverse transcription-free real-time PCR assay for rapid miRNAs quantification based on effects of base stacking.
    Lu Z, Duan D, Cao R, Zhang L, Zheng K, Li J.
    Chem Commun (Camb); 2011 Jul 14; 47(26):7452-4. PubMed ID: 21597629
    [Abstract] [Full Text] [Related]

  • 9. Four-way junction formation promoting ultrasensitive electrochemical detection of microRNA.
    Labib M, Ghobadloo SM, Khan N, Kolpashchikov DM, Berezovski MV.
    Anal Chem; 2013 Oct 15; 85(20):9422-7. PubMed ID: 24047131
    [Abstract] [Full Text] [Related]

  • 10. Electrochemical based detection of microRNA, mir21 in breast cancer cells.
    Kilic T, Topkaya SN, Ozkan Ariksoysal D, Ozsoz M, Ballar P, Erac Y, Gozen O.
    Biosens Bioelectron; 2012 Oct 15; 38(1):195-201. PubMed ID: 22776181
    [Abstract] [Full Text] [Related]

  • 11. Electrochemical DNA biosensor based on the proximity-dependent surface hybridization assay.
    Zhang Y, Wang Y, Wang H, Jiang JH, Shen GL, Yu RQ, Li J.
    Anal Chem; 2009 Mar 01; 81(5):1982-7. PubMed ID: 19173619
    [Abstract] [Full Text] [Related]

  • 12. Magnetic bead-based hybridization assay for electrochemical detection of microRNA.
    Bartosik M, Hrstka R, Palecek E, Vojtesek B.
    Anal Chim Acta; 2014 Feb 27; 813():35-40. PubMed ID: 24528657
    [Abstract] [Full Text] [Related]

  • 13. Real-time polymerase chain reaction microRNA detection based on enzymatic stem-loop probes ligation.
    Li J, Yao B, Huang H, Wang Z, Sun C, Fan Y, Chang Q, Li S, Wang X, Xi J.
    Anal Chem; 2009 Jul 01; 81(13):5446-51. PubMed ID: 19469541
    [Abstract] [Full Text] [Related]

  • 14. Rapid microRNA detection using power-free microfluidic chip: coaxial stacking effect enhances the sandwich hybridization.
    Arata H, Komatsu H, Han A, Hosokawa K, Maeda M.
    Analyst; 2012 Jul 21; 137(14):3234-7. PubMed ID: 22614070
    [Abstract] [Full Text] [Related]

  • 15. Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system.
    Yin H, Zhou Y, Zhang H, Meng X, Ai S.
    Biosens Bioelectron; 2012 Mar 15; 33(1):247-53. PubMed ID: 22317835
    [Abstract] [Full Text] [Related]

  • 16. Innovative electrochemical approach for an early detection of microRNAs.
    Lusi EA, Passamano M, Guarascio P, Scarpa A, Schiavo L.
    Anal Chem; 2009 Apr 01; 81(7):2819-22. PubMed ID: 19331434
    [Abstract] [Full Text] [Related]

  • 17. Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes.
    Jørgensen S, Baker A, Møller S, Nielsen BS.
    Methods; 2010 Dec 01; 52(4):375-81. PubMed ID: 20621190
    [Abstract] [Full Text] [Related]

  • 18. Label-free direct detection of MiRNAs with silicon nanowire biosensors.
    Zhang GJ, Chua JH, Chee RE, Agarwal A, Wong SM.
    Biosens Bioelectron; 2009 Apr 15; 24(8):2504-8. PubMed ID: 19188058
    [Abstract] [Full Text] [Related]

  • 19. Rapid, specific and sensitive electrochemical detection of foodborne bacteria.
    Pöhlmann C, Wang Y, Humenik M, Heidenreich B, Gareis M, Sprinzl M.
    Biosens Bioelectron; 2009 May 15; 24(9):2766-71. PubMed ID: 19278848
    [Abstract] [Full Text] [Related]

  • 20. Locked nucleic acid in situ hybridization analysis of miR-21 expression during colorectal cancer development.
    Yamamichi N, Shimomura R, Inada K, Sakurai K, Haraguchi T, Ozaki Y, Fujita S, Mizutani T, Furukawa C, Fujishiro M, Ichinose M, Shiogama K, Tsutsumi Y, Omata M, Iba H.
    Clin Cancer Res; 2009 Jun 15; 15(12):4009-16. PubMed ID: 19509156
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.