These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


125 related items for PubMed ID: 20433239

  • 1. Rebound spiking as a neural mechanism for surface filling-in.
    Supèr H, Romeo A.
    J Cogn Neurosci; 2011 Feb; 23(2):491-501. PubMed ID: 20433239
    [Abstract] [Full Text] [Related]

  • 2. Neural responses in the macaque v1 to bar stimuli with various lengths presented on the blind spot.
    Matsumoto M, Komatsu H.
    J Neurophysiol; 2005 May; 93(5):2374-87. PubMed ID: 15634711
    [Abstract] [Full Text] [Related]

  • 3. The neural mechanisms of perceptual filling-in.
    Komatsu H.
    Nat Rev Neurosci; 2006 Mar; 7(3):220-31. PubMed ID: 16495943
    [Abstract] [Full Text] [Related]

  • 4. Perceptual filling-in: More than the eye can see.
    De Weerd P.
    Prog Brain Res; 2006 Mar; 154():227-45. PubMed ID: 17010714
    [Abstract] [Full Text] [Related]

  • 5. Stereopsis and 3D surface perception by spiking neurons in laminar cortical circuits: a method for converting neural rate models into spiking models.
    Cao Y, Grossberg S.
    Neural Netw; 2012 Feb; 26():75-98. PubMed ID: 22119530
    [Abstract] [Full Text] [Related]

  • 6. A natural approach to studying vision.
    Felsen G, Dan Y.
    Nat Neurosci; 2005 Dec; 8(12):1643-6. PubMed ID: 16306891
    [Abstract] [Full Text] [Related]

  • 7. A neural model of the scintillating grid illusion: disinhibition and self-inhibition in early vision.
    Yu Y, Choe Y.
    Neural Comput; 2006 Mar; 18(3):521-44. PubMed ID: 16483406
    [Abstract] [Full Text] [Related]

  • 8. Using afterimages to test neural mechanisms for perceptual filling-in.
    Francis G, Ericson J.
    Neural Netw; 2004 Mar; 17(5-6):737-52. PubMed ID: 15288895
    [Abstract] [Full Text] [Related]

  • 9. 'Top-down' influences of ipsilateral or contralateral postero-temporal visual cortices on the extra-classical receptive fields of neurons in cat's striate cortex.
    Bardy C, Huang JY, Wang C, Fitzgibbon T, Dreher B.
    Neuroscience; 2009 Jan 23; 158(2):951-68. PubMed ID: 18976693
    [Abstract] [Full Text] [Related]

  • 10. Surround modulation of neuronal responses in V1 is as stable over time as responses to direct stimulation of receptive fields.
    Paşca SP, Singer W, Nikolić D.
    Cortex; 2010 Oct 23; 46(9):1199-203. PubMed ID: 20557882
    [Abstract] [Full Text] [Related]

  • 11. Spatiotemporal elements of macaque v1 receptive fields.
    Rust NC, Schwartz O, Movshon JA, Simoncelli EP.
    Neuron; 2005 Jun 16; 46(6):945-56. PubMed ID: 15953422
    [Abstract] [Full Text] [Related]

  • 12. The costs of ignoring high-order correlations in populations of model neurons.
    Michel MM, Jacobs RA.
    Neural Comput; 2006 Mar 16; 18(3):660-82. PubMed ID: 16483412
    [Abstract] [Full Text] [Related]

  • 13. The contribution of vertical and horizontal connections to the receptive field center and surround in V1.
    Chisum HJ, Fitzpatrick D.
    Neural Netw; 2004 Mar 16; 17(5-6):681-93. PubMed ID: 15288892
    [Abstract] [Full Text] [Related]

  • 14. Surround suppression of V1 neurons mediates orientation-based representation of high-order visual features.
    Tanaka H, Ohzawa I.
    J Neurophysiol; 2009 Mar 16; 101(3):1444-62. PubMed ID: 19109456
    [Abstract] [Full Text] [Related]

  • 15. Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli.
    Mante V, Bonin V, Carandini M.
    Neuron; 2008 May 22; 58(4):625-38. PubMed ID: 18498742
    [Abstract] [Full Text] [Related]

  • 16. A functional circuitry for edge-induced brightness perception.
    Hung CP, Ramsden BM, Roe AW.
    Nat Neurosci; 2007 Sep 22; 10(9):1185-90. PubMed ID: 17704775
    [Abstract] [Full Text] [Related]

  • 17. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T, Sadakane O, Okamoto M, Sato H.
    Neuroscience; 2007 Nov 23; 149(4):962-75. PubMed ID: 17945429
    [Abstract] [Full Text] [Related]

  • 18. The role of cortical feedback in the generation of the temporal receptive field responses of lateral geniculate nucleus neurons: a computational modelling study.
    Yousif N, Denham M.
    Biol Cybern; 2007 Oct 23; 97(4):269-77. PubMed ID: 17657507
    [Abstract] [Full Text] [Related]

  • 19. Temporal properties of spatial frequency tuning of surround suppression in the primary visual cortex and the lateral geniculate nucleus of the cat.
    Ishikawa A, Shimegi S, Kida H, Sato H.
    Eur J Neurosci; 2010 Jun 23; 31(11):2086-100. PubMed ID: 20604803
    [Abstract] [Full Text] [Related]

  • 20. Extraction of visual motion and optic flow.
    Fukushima K.
    Neural Netw; 2008 Jun 23; 21(5):774-85. PubMed ID: 18280109
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.