These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


254 related items for PubMed ID: 2043659

  • 1. Bound and unbound pyridine dinucleotides in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Canepa L, Ferraris AM, Miglino M, Gaetani GF.
    Biochim Biophys Acta; 1991 May 24; 1074(1):101-4. PubMed ID: 2043659
    [Abstract] [Full Text] [Related]

  • 2. Intracellular restraint: a new basis for the limitation in response to oxidative stress in human erythrocytes containing low-activity variants of glucose-6-phosphate dehydrogenase.
    Gaetani GD, Parker JC, Kirkman HN.
    Proc Natl Acad Sci U S A; 1974 Sep 24; 71(9):3584-7. PubMed ID: 4154443
    [Abstract] [Full Text] [Related]

  • 3. Increased basal oxidation of peroxiredoxin 2 and limited peroxiredoxin recycling in glucose-6-phosphate dehydrogenase-deficient erythrocytes from newborn infants.
    Cheah FC, Peskin AV, Wong FL, Ithnin A, Othman A, Winterbourn CC.
    FASEB J; 2014 Jul 24; 28(7):3205-10. PubMed ID: 24636884
    [Abstract] [Full Text] [Related]

  • 4. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase.
    Fahien LA, Laboy JI, Din ZZ, Prabhakar P, Budker T, Chobanian M.
    Arch Biochem Biophys; 1999 Apr 15; 364(2):185-94. PubMed ID: 10190973
    [Abstract] [Full Text] [Related]

  • 5. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase.
    Prabhakar P, Laboy JI, Wang J, Budker T, Din ZZ, Chobanian M, Fahien LA.
    Arch Biochem Biophys; 1998 Dec 15; 360(2):195-205. PubMed ID: 9851831
    [Abstract] [Full Text] [Related]

  • 6. NADPH, not glutathione, status modulates oxidant sensitivity in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Scott MD, Zuo L, Lubin BH, Chiu DT.
    Blood; 1991 May 01; 77(9):2059-64. PubMed ID: 2018843
    [Abstract] [Full Text] [Related]

  • 7. Ribose metabolism and nucleic acid synthesis in normal and glucose-6-phosphate dehydrogenase-deficient human erythrocytes infected with Plasmodium falciparum.
    Roth EF, Ruprecht RM, Schulman S, Vanderberg J, Olson JA.
    J Clin Invest; 1986 Apr 01; 77(4):1129-35. PubMed ID: 2420826
    [Abstract] [Full Text] [Related]

  • 8. Redox and energetic state of red blood cells in G6PD deficiency, heterozygous beta-thalassemia and the combination of both.
    Magnani M, Stocchi V, Canestrari F, Cucchiarini L, Stocchi O, Coppa GV, Felici L, Giorgi PL, Fornaini G.
    Acta Haematol; 1986 Apr 01; 75(4):211-4. PubMed ID: 3096052
    [Abstract] [Full Text] [Related]

  • 9. Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance.
    Tang HY, Ho HY, Wu PR, Chen SH, Kuypers FA, Cheng ML, Chiu DT.
    Antioxid Redox Signal; 2015 Mar 20; 22(9):744-59. PubMed ID: 25556665
    [Abstract] [Full Text] [Related]

  • 10. Reduction of arsenate to arsenite by human erythrocyte lysate and rat liver cytosol - characterization of a glutathione- and NAD-dependent arsenate reduction linked to glycolysis.
    Németi B, Gregus Z.
    Toxicol Sci; 2005 Jun 20; 85(2):847-58. PubMed ID: 15788720
    [Abstract] [Full Text] [Related]

  • 11. Severe glucose-6-phosphate dehydrogenase deficiency leads to susceptibility to infection and absent NETosis.
    Siler U, Romao S, Tejera E, Pastukhov O, Kuzmenko E, Valencia RG, Meda Spaccamela V, Belohradsky BH, Speer O, Schmugge M, Kohne E, Hoenig M, Freihorst J, Schulz AS, Reichenbach J.
    J Allergy Clin Immunol; 2017 Jan 20; 139(1):212-219.e3. PubMed ID: 27458052
    [Abstract] [Full Text] [Related]

  • 12. Disruption of pyridine nucleotide redox status during oxidative challenge at normal and low-glucose states: implications for cellular adenosine triphosphate, mitochondrial respiratory activity, and reducing capacity in colon epithelial cells.
    Circu ML, Maloney RE, Aw TY.
    Antioxid Redox Signal; 2011 Jun 20; 14(11):2151-62. PubMed ID: 21083422
    [Abstract] [Full Text] [Related]

  • 13. The effect of pyrroline-5-carboxylic acid on nucleotide metabolism in erythrocytes from normal and glucose-6-phosphate dehydrogenase-deficient subjects.
    Yeh GC, Roth EF, Phang JM, Harris SC, Nagel RL, Rinaldi A.
    J Biol Chem; 1984 May 10; 259(9):5454-8. PubMed ID: 6201483
    [Abstract] [Full Text] [Related]

  • 14. NADP+ and NADPH in glucose-6-phosphate dehydrogenase-deficient erythrocytes under oxidative stimulation.
    Mareni C, Gaetani GF.
    Biochim Biophys Acta; 1976 Jun 08; 430(3):395-8. PubMed ID: 7294
    [Abstract] [Full Text] [Related]

  • 15. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions.
    Canelas AB, van Gulik WM, Heijnen JJ.
    Biotechnol Bioeng; 2008 Jul 01; 100(4):734-43. PubMed ID: 18383140
    [Abstract] [Full Text] [Related]

  • 16. Regulation of NAD and NADP synthesis in human red cell.
    Pescarmona GP, Bracone A, David O, Sartori ML, Bosia A.
    Acta Biol Med Ger; 1977 Jul 01; 36(5-6):759-63. PubMed ID: 23635
    [Abstract] [Full Text] [Related]

  • 17. HPLC determination of oxidized and reduced pyridine coenzymes in human erythrocytes.
    Micheli V, Simmonds HA, Bari M, Pompucci G.
    Clin Chim Acta; 1993 Oct 29; 220(1):1-17. PubMed ID: 8287552
    [Abstract] [Full Text] [Related]

  • 18. Cytosolic ratios of free [NADPH]/[NADP+] and [NADH]/[NAD+] in mouse pancreatic islets, and nutrient-induced insulin secretion.
    Hedeskov CJ, Capito K, Thams P.
    Biochem J; 1987 Jan 01; 241(1):161-7. PubMed ID: 3551925
    [Abstract] [Full Text] [Related]

  • 19. Decreased catalase activity is the underlying mechanism of oxidant susceptibility in glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Scott MD, Wagner TC, Chiu DT.
    Biochim Biophys Acta; 1993 Apr 30; 1181(2):163-8. PubMed ID: 8481405
    [Abstract] [Full Text] [Related]

  • 20. Azotobacter vinelandii glucose 6-phosphate dehydrogenase properties of NAD- and NADP-linked reactions.
    Anderson BM, Wise DJ, Anderson CD.
    Biochim Biophys Acta; 1997 Jul 18; 1340(2):268-76. PubMed ID: 9252113
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.