These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


625 related items for PubMed ID: 20439270

  • 1. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z, Tal D, Trabelsi N.
    Philos Trans A Math Phys Eng Sci; 2010 Jun 13; 368(1920):2707-23. PubMed ID: 20439270
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J, Ito K, van Rietbergen B.
    Biomech Model Mechanobiol; 2015 Jan 13; 14(1):39-48. PubMed ID: 24777672
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses.
    Baca V, Horak Z, Mikulenka P, Dzupa V.
    Med Eng Phys; 2008 Sep 13; 30(7):924-30. PubMed ID: 18243761
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations.
    Yosibash Z, Trabelsi N, Milgrom C.
    J Biomech; 2007 Sep 13; 40(16):3688-99. PubMed ID: 17706228
    [Abstract] [Full Text] [Related]

  • 10. Validation of subject-specific automated p-FE analysis of the proximal femur.
    Trabelsi N, Yosibash Z, Milgrom C.
    J Biomech; 2009 Feb 09; 42(3):234-41. PubMed ID: 19118831
    [Abstract] [Full Text] [Related]

  • 11. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains.
    Morgan EF, Bayraktar HH, Yeh OC, Majumdar S, Burghardt A, Keaveny TM.
    J Biomech; 2004 Sep 09; 37(9):1413-20. PubMed ID: 15275849
    [Abstract] [Full Text] [Related]

  • 12. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions.
    Peng L, Bai J, Zeng X, Zhou Y.
    Med Eng Phys; 2006 Apr 09; 28(3):227-33. PubMed ID: 16076560
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Micro-finite element simulation of trabecular-bone post-yield behaviour--effects of material model, element size and type.
    Verhulp E, Van Rietbergen B, Muller R, Huiskes R.
    Comput Methods Biomech Biomed Engin; 2008 Aug 09; 11(4):389-95. PubMed ID: 18568833
    [Abstract] [Full Text] [Related]

  • 19. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E, Taddei F, Cristofolini L, Viceconti M.
    J Biomech; 2008 Aug 09; 41(2):356-67. PubMed ID: 18022179
    [Abstract] [Full Text] [Related]

  • 20. Experimental validation of finite element model for proximal composite femur using optical measurements.
    Grassi L, Väänänen SP, Amin Yavari S, Weinans H, Jurvelin JS, Zadpoor AA, Isaksson H.
    J Mech Behav Biomed Mater; 2013 May 09; 21():86-94. PubMed ID: 23510970
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 32.