These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


394 related items for PubMed ID: 20441798

  • 41. Independent component model of the default-mode brain function: Assessing the impact of active thinking.
    Esposito F, Bertolino A, Scarabino T, Latorre V, Blasi G, Popolizio T, Tedeschi G, Cirillo S, Goebel R, Di Salle F.
    Brain Res Bull; 2006 Oct 16; 70(4-6):263-9. PubMed ID: 17027761
    [Abstract] [Full Text] [Related]

  • 42. Decreased functional connectivity by aging is associated with cognitive decline.
    Onoda K, Ishihara M, Yamaguchi S.
    J Cogn Neurosci; 2012 Nov 16; 24(11):2186-98. PubMed ID: 22784277
    [Abstract] [Full Text] [Related]

  • 43. Brain dopaminergic modulation associated with executive function in Parkinson's disease.
    Farid K, Sibon I, Guehl D, Cuny E, Burbaud P, Allard M.
    Mov Disord; 2009 Oct 15; 24(13):1962-9. PubMed ID: 19672989
    [Abstract] [Full Text] [Related]

  • 44. Salience and Default Mode Network Coupling Predicts Cognition in Aging and Parkinson's Disease.
    Putcha D, Ross RS, Cronin-Golomb A, Janes AC, Stern CE.
    J Int Neuropsychol Soc; 2016 Feb 15; 22(2):205-15. PubMed ID: 26888617
    [Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46. High-dose transdermal nicotine and naltrexone: effects on nicotine withdrawal, urges, smoking, and effects of smoking.
    Rohsenow DJ, Monti PM, Hutchison KE, Swift RM, MacKinnon SV, Sirota AD, Kaplan GB.
    Exp Clin Psychopharmacol; 2007 Feb 15; 15(1):81-92. PubMed ID: 17295587
    [Abstract] [Full Text] [Related]

  • 47. Nicotinic modulation of salience network connectivity and centrality in schizophrenia.
    Smucny J, Wylie KP, Kronberg E, Legget KT, Tregellas JR.
    J Psychiatr Res; 2017 Jun 15; 89():85-96. PubMed ID: 28193583
    [Abstract] [Full Text] [Related]

  • 48. Neurocognitive variation in smoking behavior and withdrawal: genetic and affective moderators.
    Evans DE, Park JY, Maxfield N, Drobes DJ.
    Genes Brain Behav; 2009 Feb 15; 8(1):86-96. PubMed ID: 19220487
    [Abstract] [Full Text] [Related]

  • 49. Insula Demonstrates a Non-Linear Response to Varying Demand for Cognitive Control and Weaker Resting Connectivity With the Executive Control Network in Smokers.
    Fedota JR, Matous AL, Salmeron BJ, Gu H, Ross TJ, Stein EA.
    Neuropsychopharmacology; 2016 Sep 15; 41(10):2557-65. PubMed ID: 27112116
    [Abstract] [Full Text] [Related]

  • 50. Greater BOLD activity but more efficient connectivity is associated with better cognitive performance within a sample of nicotine-deprived smokers.
    Nichols TT, Gates KM, Molenaar PC, Wilson SJ.
    Addict Biol; 2014 Sep 15; 19(5):931-40. PubMed ID: 23573872
    [Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52. Human brain functional network changes associated with enhanced and impaired attentional task performance.
    Giessing C, Thiel CM, Alexander-Bloch AF, Patel AX, Bullmore ET.
    J Neurosci; 2013 Apr 03; 33(14):5903-14. PubMed ID: 23554472
    [Abstract] [Full Text] [Related]

  • 53. Smoking Progression and Nicotine-Enhanced Reward Sensitivity Predicted by Resting-State Functional Connectivity in Salience and Executive Control Networks.
    Gunn MP, Rose GM, Whitton AE, Pizzagalli DA, Gilbert DG.
    Nicotine Tob Res; 2024 Sep 23; 26(10):1305-1312. PubMed ID: 38624067
    [Abstract] [Full Text] [Related]

  • 54. The link between resting-state functional connectivity and cognition in MS patients.
    Cruz-Gómez ÁJ, Ventura-Campos N, Belenguer A, Ávila C, Forn C.
    Mult Scler; 2014 Mar 23; 20(3):338-48. PubMed ID: 23828871
    [Abstract] [Full Text] [Related]

  • 55. Differences in "bottom-up" and "top-down" neural activity in current and former cigarette smokers: Evidence for neural substrates which may promote nicotine abstinence through increased cognitive control.
    Nestor L, McCabe E, Jones J, Clancy L, Garavan H.
    Neuroimage; 2011 Jun 15; 56(4):2258-75. PubMed ID: 21440645
    [Abstract] [Full Text] [Related]

  • 56. Resting-state networks in adolescents with 22q11.2 deletion syndrome: associations with prodromal symptoms and executive functions.
    Debbané M, Lazouret M, Lagioia A, Schneider M, Van De Ville D, Eliez S.
    Schizophr Res; 2012 Aug 15; 139(1-3):33-9. PubMed ID: 22704643
    [Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58. Divergent brain network connectivity in amyotrophic lateral sclerosis.
    Agosta F, Canu E, Valsasina P, Riva N, Prelle A, Comi G, Filippi M.
    Neurobiol Aging; 2013 Feb 15; 34(2):419-27. PubMed ID: 22608240
    [Abstract] [Full Text] [Related]

  • 59. Functional Connectivity of the Raphe Nuclei: Link to Tobacco Withdrawal in Smokers.
    Faulkner P, Ghahremani DG, Tyndale RF, Hellemann G, London ED.
    Int J Neuropsychopharmacol; 2018 Sep 01; 21(9):800-808. PubMed ID: 29924326
    [Abstract] [Full Text] [Related]

  • 60. Core brain networks interactions and cognitive control in internet gaming disorder individuals in late adolescence/early adulthood.
    Yuan K, Qin W, Yu D, Bi Y, Xing L, Jin C, Tian J.
    Brain Struct Funct; 2016 Apr 01; 221(3):1427-42. PubMed ID: 25573247
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 20.