These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


437 related items for PubMed ID: 20443577

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications.
    Madhumathi K, Sudheesh Kumar PT, Kavya KC, Furuike T, Tamura H, Nair SV, Jayakumar R.
    Int J Biol Macromol; 2009 Oct 01; 45(3):289-92. PubMed ID: 19549539
    [Abstract] [Full Text] [Related]

  • 25. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst.
    Faure J, Drevet R, Lemelle A, Ben Jaber N, Tara A, El Btaouri H, Benhayoune H.
    Mater Sci Eng C Mater Biol Appl; 2015 Feb 01; 47():407-12. PubMed ID: 25492213
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability.
    Oliveira JM, Silva SS, Malafaya PB, Rodrigues MT, Kotobuki N, Hirose M, Gomes ME, Mano JF, Ohgushi H, Reis RL.
    J Biomed Mater Res A; 2009 Oct 01; 91(1):175-86. PubMed ID: 18780358
    [Abstract] [Full Text] [Related]

  • 28. In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering.
    Teixeira S, Fernandes H, Leusink A, van Blitterswijk C, Ferraz MP, Monteiro FJ, de Boer J.
    J Biomed Mater Res A; 2010 May 01; 93(2):567-75. PubMed ID: 19591232
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Fabrication, characterization, and in vitro degradation of composite scaffolds based on PHBV and bioactive glass.
    Li H, Du R, Chang J.
    J Biomater Appl; 2005 Oct 01; 20(2):137-55. PubMed ID: 16183674
    [Abstract] [Full Text] [Related]

  • 34. Crosslinked poly(epsilon-caprolactone/D,L-lactide)/bioactive glass composite scaffolds for bone tissue engineering.
    Meretoja VV, Helminen AO, Korventausta JJ, Haapa-aho V, Seppälä JV, Närhi TO.
    J Biomed Mater Res A; 2006 May 01; 77(2):261-8. PubMed ID: 16392138
    [Abstract] [Full Text] [Related]

  • 35. Manufacturing of multi-layered nanofibrous structures composed of polyurethane and poly(ethylene oxide) as potential blood vessel scaffolds.
    Shin JW, Lee YJ, Heo SJ, Park SA, Kim SH, Kim YJ, Kim DH, Shin JW.
    J Biomater Sci Polym Ed; 2009 May 01; 20(5-6):757-71. PubMed ID: 19323888
    [Abstract] [Full Text] [Related]

  • 36. In vitro evaluation of textile chitosan scaffolds for tissue engineering using human bone marrow stromal cells.
    Heinemann C, Heinemann S, Lode A, Bernhardt A, Worch H, Hanke T.
    Biomacromolecules; 2009 May 11; 10(5):1305-10. PubMed ID: 19344120
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique.
    Wu ZY, Hill RG, Yue S, Nightingale D, Lee PD, Jones JR.
    Acta Biomater; 2011 Apr 11; 7(4):1807-16. PubMed ID: 21130188
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.