These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
479 related items for PubMed ID: 20446746
1. Electrochemical oxidation of guanine: electrode reaction mechanism and tailoring carbon electrode surfaces to switch between adsorptive and diffusional responses. Li Q, Batchelor-McAuley C, Compton RG. J Phys Chem B; 2010 Jun 03; 114(21):7423-8. PubMed ID: 20446746 [Abstract] [Full Text] [Related]
2. Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine. Patel AN, Tan SY, Miller TS, Macpherson JV, Unwin PR. Anal Chem; 2013 Dec 17; 85(24):11755-64. PubMed ID: 24308368 [Abstract] [Full Text] [Related]
3. Evaluation of levels of defect sites present in highly ordered pyrolytic graphite electrodes using capacitive and faradaic current components derived simultaneously from large-amplitude Fourier transformed ac voltammetric experiments. Lee CY, Bond AM. Anal Chem; 2009 Jan 15; 81(2):584-94. PubMed ID: 19140776 [Abstract] [Full Text] [Related]
4. Abrasive immobilization of carbon nanotubes on a basal plane pyrolytic graphite electrode: application to the detection of epinephrine. Salimi A, Banks CE, Compton RG. Analyst; 2004 Mar 15; 129(3):225-8. PubMed ID: 14978524 [Abstract] [Full Text] [Related]
5. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Banks CE, Compton RG. Analyst; 2005 Sep 15; 130(9):1232-9. PubMed ID: 16096667 [Abstract] [Full Text] [Related]
6. Detailed analysis of the electron-transfer properties of azurin adsorbed on graphite electrodes using DC and large-amplitude Fourier transformed AC voltammetry. Fleming BD, Zhang J, Elton D, Bond AM. Anal Chem; 2007 Sep 01; 79(17):6515-26. PubMed ID: 17668927 [Abstract] [Full Text] [Related]
7. Voltammetric studies of sumatriptan on the surface of pyrolytic graphite electrode modified with multi-walled carbon nanotubes decorated with silver nanoparticles. Ghalkhani M, Shahrokhian S, Ghorbani-Bidkorbeh F. Talanta; 2009 Nov 15; 80(1):31-8. PubMed ID: 19782189 [Abstract] [Full Text] [Related]
8. Electrochemical studies on the oxidation of guanine and adenine at cyclodextrin modified electrodes. Abbaspour A, Noori A. Analyst; 2008 Dec 15; 133(12):1664-72. PubMed ID: 19082068 [Abstract] [Full Text] [Related]
10. Electrooxidative decarboxylation of vanillylmandelic acid: voltammetric differentiation between the structurally related compounds homovanillic acid and vanillylmandelic acid. Li Q, Batchelor-McAuley C, Compton RG. J Phys Chem B; 2010 Jul 29; 114(29):9713-9. PubMed ID: 20608671 [Abstract] [Full Text] [Related]
11. Electrocatalysis of reduced L-glutathione oxidation by iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin (FeT4MPyP) adsorbed on multi-walled carbon nanotubes. Luz RC, Damos FS, Tanaka AA, Kubota LT, Gushikem Y. Talanta; 2008 Sep 15; 76(5):1097-104. PubMed ID: 18761161 [Abstract] [Full Text] [Related]
12. Highly sensitive voltammetric determination of lamotrigine at highly oriented pyrolytic graphite electrode. Saberi RS, Shahrokhian S. Bioelectrochemistry; 2012 Apr 15; 84():38-43. PubMed ID: 22137203 [Abstract] [Full Text] [Related]
13. Scanning micropipet contact method for high-resolution imaging of electrode surface redox activity. Williams CG, Edwards MA, Colley AL, Macpherson JV, Unwin PR. Anal Chem; 2009 Apr 01; 81(7):2486-95. PubMed ID: 19265426 [Abstract] [Full Text] [Related]
14. Electrochemistry of Q-graphene. Randviir EP, Brownson DA, Gómez-Mingot M, Kampouris DK, Iniesta J, Banks CE. Nanoscale; 2012 Oct 21; 4(20):6470-80. PubMed ID: 22961209 [Abstract] [Full Text] [Related]
15. Electrocatalytic oxidation of guanine and DNA on a carbon paste electrode modified by cobalt hexacyanoferrate films. Abbaspour A, Mehrgardi MA. Anal Chem; 2004 Oct 01; 76(19):5690-6. PubMed ID: 15456287 [Abstract] [Full Text] [Related]
16. Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes. Saleh FS, Rahman MR, Okajima T, Mao L, Ohsaka T. Bioelectrochemistry; 2011 Feb 01; 80(2):121-7. PubMed ID: 20667793 [Abstract] [Full Text] [Related]
17. Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts. Moore RR, Banks CE, Compton RG. Anal Chem; 2004 May 15; 76(10):2677-82. PubMed ID: 15144174 [Abstract] [Full Text] [Related]
18. Stacked graphene nanofibers for electrochemical oxidation of DNA bases. Ambrosi A, Pumera M. Phys Chem Chem Phys; 2010 Aug 21; 12(31):8943-7. PubMed ID: 20532301 [Abstract] [Full Text] [Related]
19. Interaction of nucleic acids with electrically charged surfaces. VI. A comparative study on the electrochemical behaviour of native and denatured DNAs at graphite electrodes. Brabec V. Biophys Chem; 1975 May 21; 9(4):289-97. PubMed ID: 16997196 [Abstract] [Full Text] [Related]
20. The advantage of using carbon nanotubes compared with edge plane pyrolytic graphite as an electrode material for oxidase-based biosensors. Kurusu F, Tsunoda H, Saito A, Tomita A, Kadota A, Kayahara N, Karube I, Gotoh M. Analyst; 2006 Dec 21; 131(12):1292-8. PubMed ID: 17124536 [Abstract] [Full Text] [Related] Page: [Next] [New Search]