These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 20447465

  • 1. Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars.
    Nair NU, Zhao H.
    Metab Eng; 2010 Sep; 12(5):462-8. PubMed ID: 20447465
    [Abstract] [Full Text] [Related]

  • 2. The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis.
    Walther T, Hensirisak P, Agblevor FA.
    Bioresour Technol; 2001 Feb; 76(3):213-20. PubMed ID: 11198172
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Construction of plasmid-free Escherichia coli for the production of arabitol-free xylitol from corncob hemicellulosic hydrolysate.
    Su B, Zhang Z, Wu M, Lin J, Yang L.
    Sci Rep; 2016 May 26; 6():26567. PubMed ID: 27225023
    [Abstract] [Full Text] [Related]

  • 7. L-arabinose pathway engineering for arabitol-free xylitol production in Candida tropicalis.
    Yoon BH, Jeon WY, Shim WY, Kim JH.
    Biotechnol Lett; 2011 Apr 26; 33(4):747-53. PubMed ID: 21127946
    [Abstract] [Full Text] [Related]

  • 8. Enhanced xylitol production by precultivation of Candida guilliermondii cells in sugarcane bagasse hemicellulosic hydrolysate.
    Rodrigues RC, Sene L, Matos GS, Roberto IC, Pessoa A, Felipe MG.
    Curr Microbiol; 2006 Jul 26; 53(1):53-9. PubMed ID: 16775788
    [Abstract] [Full Text] [Related]

  • 9. Kinetic behavior of Candida guilliermondii yeast during xylitol production from Brewer's spent grain hemicellulosic hydrolysate.
    Mussatto SI, Dragone G, Roberto IC.
    Biotechnol Prog; 2005 Jul 26; 21(4):1352-6. PubMed ID: 16080723
    [Abstract] [Full Text] [Related]

  • 10. Production of xylitol from D-xylose by recombinant Lactococcus lactis.
    Nyyssölä A, Pihlajaniemi A, Palva A, von Weymarn N, Leisola M.
    J Biotechnol; 2005 Jul 21; 118(1):55-66. PubMed ID: 15916828
    [Abstract] [Full Text] [Related]

  • 11. Model compound studies: influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis.
    Walthers T, Hensirisak P, Agblevor FA.
    Appl Biochem Biotechnol; 2001 Jul 21; 91-93():423-35. PubMed ID: 11963871
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Identification and characterization of D-xylose reductase involved in pentose catabolism of the zygomycetous fungus Rhizomucor pusillus.
    Komeda H, Yamasaki-Yashiki S, Hoshino K, Asano Y.
    J Biosci Bioeng; 2015 Jan 21; 119(1):57-64. PubMed ID: 25041710
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Putative xylose and arabinose reductases in Saccharomyces cerevisiae.
    Träff KL, Jönsson LJ, Hahn-Hägerdal B.
    Yeast; 2002 Oct 21; 19(14):1233-41. PubMed ID: 12271459
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.