These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


750 related items for PubMed ID: 20449903

  • 1. The amplitude spectrum area correctly predicts improved resuscitation and facilitated defibrillation with head cooling.
    Tsai MS, Barbut D, Guan J, Bisera J, Inderbitzen B, Weil MH, Tang W.
    Crit Care Med; 2008 Nov; 36(11 Suppl):S413-7. PubMed ID: 20449903
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Intra-arrest selective brain cooling improves success of resuscitation in a porcine model of prolonged cardiac arrest.
    Wang H, Barbut D, Tsai MS, Sun S, Weil MH, Tang W.
    Resuscitation; 2010 May; 81(5):617-21. PubMed ID: 20207471
    [Abstract] [Full Text] [Related]

  • 4. Minimal interruption of cardiopulmonary resuscitation for a single shock as mandated by automated external defibrillations does not compromise outcomes in a porcine model of cardiac arrest and resuscitation.
    Ristagno G, Tang W, Russell JK, Jorgenson D, Wang H, Sun S, Weil MH.
    Crit Care Med; 2008 Nov; 36(11):3048-53. PubMed ID: 18824916
    [Abstract] [Full Text] [Related]

  • 5. Survival and neurological outcomes after nasopharyngeal cooling or peripheral vein cold saline infusion initiated during cardiopulmonary resuscitation in a porcine model of prolonged cardiac arrest.
    Yu T, Barbut D, Ristagno G, Cho JH, Sun S, Li Y, Weil MH, Tang W.
    Crit Care Med; 2010 Mar; 38(3):916-21. PubMed ID: 20081534
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. A comparison between head cooling begun during cardiopulmonary resuscitation and surface cooling after resuscitation in a pig model of cardiac arrest.
    Guan J, Barbut D, Wang H, Li Y, Tsai MS, Sun S, Inderbitzen B, Weil MH, Tang W.
    Crit Care Med; 2008 Nov; 36(11 Suppl):S428-33. PubMed ID: 20449906
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Real-Time Ventricular Fibrillation Amplitude-Spectral Area Analysis to Guide Timing of Shock Delivery Improves Defibrillation Efficacy During Cardiopulmonary Resuscitation in Swine.
    Aiello S, Perez M, Cogan C, Baetiong A, Miller SA, Radhakrishnan J, Kaufman CL, Gazmuri RJ.
    J Am Heart Assoc; 2017 Nov 04; 6(11):. PubMed ID: 29102980
    [Abstract] [Full Text] [Related]

  • 10. Hypothermia improves defibrillation success and resuscitation outcomes from ventricular fibrillation.
    Boddicker KA, Zhang Y, Zimmerman MB, Davies LR, Kerber RE.
    Circulation; 2005 Jun 21; 111(24):3195-201. PubMed ID: 15956132
    [Abstract] [Full Text] [Related]

  • 11. Cold aortic flush and chest compressions enable good neurologic outcome after 15 mins of ventricular fibrillation in cardiac arrest in pigs.
    Janata A, Weihs W, Schratter A, Bayegan K, Holzer M, Frossard M, Sipos W, Springler G, Schmidt P, Sterz F, Losert UM, Laggner AN, Kochanek PM, Behringer W.
    Crit Care Med; 2010 Aug 21; 38(8):1637-43. PubMed ID: 20543671
    [Abstract] [Full Text] [Related]

  • 12. Effects of biphasic waveforms on outcomes of cardiopulmonary resuscitation in a porcine model of prolonged cardiac arrest.
    Chang YT, Tang W, Wang J, Brewer JE, Freeman G, Sun S, Weil MH.
    Crit Care Med; 2006 Dec 21; 34(12):3024-8. PubMed ID: 17075369
    [Abstract] [Full Text] [Related]

  • 13. Precountershock cardiopulmonary resuscitation improves initial response to defibrillation from prolonged ventricular fibrillation: a randomized, controlled swine study.
    Berg RA, Hilwig RW, Ewy GA, Kern KB.
    Crit Care Med; 2004 Jun 21; 32(6):1352-7. PubMed ID: 15187519
    [Abstract] [Full Text] [Related]

  • 14. Sodium nitroprusside-enhanced cardiopulmonary resuscitation facilitates intra-arrest therapeutic hypothermia in a porcine model of prolonged ventricular fibrillation.
    Debaty G, Matsuura TR, Bartos JA, Rees JN, McKnite SH, Lick M, Boucher F, Yannopoulos D.
    Crit Care Med; 2015 Apr 21; 43(4):849-55. PubMed ID: 25525755
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Transthoracic application of electrical cardiopulmonary resuscitation for treatment of cardiac arrest.
    Wang H, Brewer JE, Guan J, Gilman B, Sun S, Li Y, Castillo C, Kroll MW, Weil MH, Tang W.
    Crit Care Med; 2008 Nov 21; 36(11 Suppl):S458-66. PubMed ID: 20449911
    [Abstract] [Full Text] [Related]

  • 17. Optimal timing for electrical defibrillation after prolonged untreated ventricular fibrillation.
    Kolarova J, Ayoub IM, Yi Z, Gazmuri RJ.
    Crit Care Med; 2003 Jul 21; 31(7):2022-8. PubMed ID: 12847399
    [Abstract] [Full Text] [Related]

  • 18. Selective brain cooling in infant piglets after cardiac arrest and resuscitation.
    Gelman B, Schleien CL, Lohe A, Kuluz JW.
    Crit Care Med; 1996 Jun 21; 24(6):1009-17. PubMed ID: 8681567
    [Abstract] [Full Text] [Related]

  • 19. Fixed-energy biphasic waveform defibrillation in a pediatric model of cardiac arrest and resuscitation.
    Tang W, Weil MH, Jorgenson D, Klouche K, Morgan C, Yu T, Sun S, Snyder D.
    Crit Care Med; 2002 Dec 21; 30(12):2736-41. PubMed ID: 12483066
    [Abstract] [Full Text] [Related]

  • 20. The effects of biphasic and conventional monophasic defibrillation on postresuscitation myocardial function.
    Tang W, Weil MH, Sun S, Yamaguchi H, Povoas HP, Pernat AM, Bisera J.
    J Am Coll Cardiol; 1999 Sep 21; 34(3):815-22. PubMed ID: 10483965
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 38.