These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
154 related items for PubMed ID: 2045148
1. Effects of amino acid infusion on renal hemodynamics. Role of endothelium-derived relaxing factor. Tolins JP, Raij L. Hypertension; 1991 Jun; 17(6 Pt 2):1045-51. PubMed ID: 2045148 [Abstract] [Full Text] [Related]
2. Role of endothelium-derived relaxing factor in the in vivo renal vascular action of adenosine in dogs. Okumura M, Miura K, Yamashita Y, Yukimura T, Yamamoto K. J Pharmacol Exp Ther; 1992 Mar; 260(3):1262-7. PubMed ID: 1545391 [Abstract] [Full Text] [Related]
3. Role of endothelium-derived relaxing factor in regulation of renal hemodynamic responses. Tolins JP, Palmer RM, Moncada S, Raij L. Am J Physiol; 1990 Mar; 258(3 Pt 2):H655-62. PubMed ID: 2156453 [Abstract] [Full Text] [Related]
4. Role of endothelium-derived nitric oxide in the renal hemodynamic response to amino acid infusion. Chen C, Mitchell KD, Navar LG. Am J Physiol; 1992 Sep; 263(3 Pt 2):R510-6. PubMed ID: 1415635 [Abstract] [Full Text] [Related]
5. Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney. Baylis C, Harton P, Engels K. J Am Soc Nephrol; 1990 Dec; 1(6):875-81. PubMed ID: 2103847 [Abstract] [Full Text] [Related]
6. Endothelium-derived relaxing factor in regulation of basal cardiopulmonary and renal function. Perrella MA, Hildebrand FL, Margulies KB, Burnett JC. Am J Physiol; 1991 Aug; 261(2 Pt 2):R323-8. PubMed ID: 1877690 [Abstract] [Full Text] [Related]
7. Mechanisms of glucagon-induced renal vasodilation: role of prostaglandins and endothelium-derived relaxing factor. Tolins JP. J Lab Clin Med; 1992 Dec; 120(6):941-8. PubMed ID: 1453114 [Abstract] [Full Text] [Related]
8. Role of nitric oxide in the renal hemodynamic response to a meat meal. Salazar FJ, Alberola A, Nakamura T, Granger JP. Am J Physiol; 1994 Oct; 267(4 Pt 2):R1050-5. PubMed ID: 7943415 [Abstract] [Full Text] [Related]
9. EDRF role in renal function and blood pressure of normal rats and rats with obstructive uropathy. Reyes AA, Martin D, Settle S, Klahr S. Kidney Int; 1992 Feb; 41(2):403-13. PubMed ID: 1552713 [Abstract] [Full Text] [Related]
10. Role of prostaglandins and endothelium-derived relaxing factor on the renal response to acetylcholine. Salom MG, Lahera V, Romero JC. Am J Physiol; 1991 Jan; 260(1 Pt 2):F145-9. PubMed ID: 1992776 [Abstract] [Full Text] [Related]
11. Acute blockade of nitric oxide synthase inhibits renal vasodilation and hyperfiltration during pregnancy in chronically instrumented conscious rats. Danielson LA, Conrad KP. J Clin Invest; 1995 Jul; 96(1):482-90. PubMed ID: 7542284 [Abstract] [Full Text] [Related]
13. Mediatory role of endothelium-derived nitric oxide in renal vasodilatory and excretory effects of bradykinin. Lahera V, Salom MG, Fiksen-Olsen MJ, Romero JC. Am J Hypertens; 1991 Mar; 4(3 Pt 1):260-2. PubMed ID: 2043304 [Abstract] [Full Text] [Related]
14. Role of endothelium-derived nitric oxide in the pathogenesis of the renal hemodynamic changes of experimental diabetes. Komers R, Allen TJ, Cooper ME. Diabetes; 1994 Oct; 43(10):1190-7. PubMed ID: 7926287 [Abstract] [Full Text] [Related]
15. The involvement of endothelium-derived relaxing factor in the regulation of renal cortical blood flow in the rat. Walder CE, Thiemermann C, Vane JR. Br J Pharmacol; 1991 Apr; 102(4):967-73. PubMed ID: 1855125 [Abstract] [Full Text] [Related]