These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


195 related items for PubMed ID: 20453117

  • 1. Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism.
    Takos A, Lai D, Mikkelsen L, Abou Hachem M, Shelton D, Motawia MS, Olsen CE, Wang TL, Martin C, Rook F.
    Plant Cell; 2010 May; 22(5):1605-19. PubMed ID: 20453117
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Diversification of an ancient theme: hydroxynitrile glucosides.
    Bjarnholt N, Rook F, Motawia MS, Cornett C, Jørgensen C, Olsen CE, Jaroszewski JW, Bak S, Møller BL.
    Phytochemistry; 2008 May; 69(7):1507-16. PubMed ID: 18342345
    [Abstract] [Full Text] [Related]

  • 6. Lotus japonicus flowers are defended by a cyanogenic β-glucosidase with highly restricted expression to essential reproductive organs.
    Lai D, Pičmanová M, Abou Hachem M, Motawia MS, Olsen CE, Møller BL, Rook F, Takos AM.
    Plant Mol Biol; 2015 Sep; 89(1-2):21-34. PubMed ID: 26249044
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Biosynthesis of rhodiocyanosides in Lotus japonicus: rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile.
    Saito S, Motawia MS, Olsen CE, Møller BL, Bak S.
    Phytochemistry; 2012 May; 77():260-7. PubMed ID: 22385904
    [Abstract] [Full Text] [Related]

  • 9. Biosynthesis of cyanogenic glucosides in Phaseolus lunatus and the evolution of oxime-based defenses.
    Lai D, Maimann AB, Macea E, Ocampo CH, Cardona G, Pičmanová M, Darbani B, Olsen CE, Debouck D, Raatz B, Møller BL, Rook F.
    Plant Direct; 2020 Aug; 4(8):e00244. PubMed ID: 32775954
    [Abstract] [Full Text] [Related]

  • 10. Spatial separation of the cyanogenic β-glucosidase ZfBGD2 and cyanogenic glucosides in the haemolymph of Zygaena larvae facilitates cyanide release.
    Pentzold S, Jensen MK, Matthes A, Olsen CE, Petersen BL, Clausen H, Møller BL, Bak S, Zagrobelny M.
    R Soc Open Sci; 2017 Jun; 4(6):170262. PubMed ID: 28680679
    [Abstract] [Full Text] [Related]

  • 11. Cyanogenic glucosides in the biological warfare between plants and insects: the Burnet moth-Birdsfoot trefoil model system.
    Zagrobelny M, Møller BL.
    Phytochemistry; 2011 Sep; 72(13):1585-92. PubMed ID: 21429539
    [Abstract] [Full Text] [Related]

  • 12. Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging.
    Li B, Knudsen C, Hansen NK, Jørgensen K, Kannangara R, Bak S, Takos A, Rook F, Hansen SH, Møller BL, Janfelt C, Bjarnholt N.
    Plant J; 2013 Jun; 74(6):1059-71. PubMed ID: 23551340
    [Abstract] [Full Text] [Related]

  • 13. Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts.
    Zagrobelny M, de Castro ÉCP, Møller BL, Bak S.
    Insects; 2018 May 03; 9(2):. PubMed ID: 29751568
    [Abstract] [Full Text] [Related]

  • 14. The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles.
    Zagrobelny M, Bak S, Ekstrøm CT, Olsen CE, Møller BL.
    Insect Biochem Mol Biol; 2007 Jan 03; 37(1):10-8. PubMed ID: 17175442
    [Abstract] [Full Text] [Related]

  • 15. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology.
    Jørgensen K, Bak S, Busk PK, Sørensen C, Olsen CE, Puonti-Kaerlas J, Møller BL.
    Plant Physiol; 2005 Sep 03; 139(1):363-74. PubMed ID: 16126856
    [Abstract] [Full Text] [Related]

  • 16. Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus.
    Nielsen KA, Hrmova M, Nielsen JN, Forslund K, Ebert S, Olsen CE, Fincher GB, Møller BL.
    Planta; 2006 Apr 03; 223(5):1010-23. PubMed ID: 16307283
    [Abstract] [Full Text] [Related]

  • 17. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava.
    Kannangara R, Motawia MS, Hansen NK, Paquette SM, Olsen CE, Møller BL, Jørgensen K.
    Plant J; 2011 Oct 03; 68(2):287-301. PubMed ID: 21736650
    [Abstract] [Full Text] [Related]

  • 18. Functional characterization, homology modeling and docking studies of β-glucosidase responsible for bioactivation of cyanogenic hydroxynitrile glucosides from Leucaena leucocephala (subabul).
    Shaik NM, Misra A, Singh S, Fatangare AB, Ramakumar S, Rawal SK, Khan BM.
    Mol Biol Rep; 2013 Feb 03; 40(2):1351-63. PubMed ID: 23079707
    [Abstract] [Full Text] [Related]

  • 19. Got the blues? A high-throughput screen for cyanogenesis mutants.
    Bertoni G.
    Plant Cell; 2010 May 03; 22(5):1421. PubMed ID: 20453118
    [No Abstract] [Full Text] [Related]

  • 20. MeJA-responsive bHLH transcription factor LjbHLH7 regulates cyanogenic glucoside biosynthesis in Lotus japonicus.
    Chen C, Liu F, Zhang K, Niu X, Zhao H, Liu Q, Georgiev MI, Xu X, Zhang X, Zhou M.
    J Exp Bot; 2022 Apr 18; 73(8):2650-2665. PubMed ID: 35083483
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.