These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


293 related items for PubMed ID: 20453285

  • 1. Numerical simulations for a quantitative analysis of AFM electrostatic nanopatterning on PMMA by Kelvin force microscopy.
    Palleau E, Ressier L, Borowik Ł, Mélin T.
    Nanotechnology; 2010 Jun 04; 21(22):225706. PubMed ID: 20453285
    [Abstract] [Full Text] [Related]

  • 2. Electrostatic nanopatterning of PMMA by AFM charge writing for directed nano-assembly.
    Ressier L, Le Nader V.
    Nanotechnology; 2008 Apr 02; 19(13):135301. PubMed ID: 19636140
    [Abstract] [Full Text] [Related]

  • 3. Quantification of the electrostatic forces involved in the directed assembly of colloidal nanoparticles by AFM nanoxerography.
    Palleau E, Sangeetha NM, Ressier L.
    Nanotechnology; 2011 Aug 12; 22(32):325603. PubMed ID: 21772072
    [Abstract] [Full Text] [Related]

  • 4. Tip-to-sample distance dependence of an electrostatic force in KFM measurements.
    Takahashi T, Ono S.
    Ultramicroscopy; 2004 Aug 12; 100(3-4):287-92. PubMed ID: 15231321
    [Abstract] [Full Text] [Related]

  • 5. Direct probing of solvent-induced charge degradation in polypropylene electret fibres via electrostatic force microscopy.
    Kim J, Jasper W, Hinestroza J.
    J Microsc; 2007 Jan 12; 225(Pt 1):72-9. PubMed ID: 17286696
    [Abstract] [Full Text] [Related]

  • 6. AFM force mapping for characterizing patterns of electrostatic charges on SiO2 electrets.
    Zhang Y, Zhao D, Tan X, Cao T, Zhang X.
    Langmuir; 2010 Jul 20; 26(14):11958-62. PubMed ID: 20476727
    [Abstract] [Full Text] [Related]

  • 7. Nanoscale quantitative measurement of the potential of charged nanostructures by electrostatic and Kelvin probe force microscopy: unraveling electronic processes in complex materials.
    Liscio A, Palermo V, Samorì P.
    Acc Chem Res; 2010 Apr 20; 43(4):541-50. PubMed ID: 20058907
    [Abstract] [Full Text] [Related]

  • 8. High-resolution noncontact atomic force microscopy.
    Pérez R, García R, Schwarz U.
    Nanotechnology; 2009 Jul 01; 20(26):260201. PubMed ID: 19531843
    [Abstract] [Full Text] [Related]

  • 9. Feed-forward compensation of surface potential in atomic force microscopy.
    Ziegler D, Naujoks N, Stemmer A.
    Rev Sci Instrum; 2008 Jun 01; 79(6):063704. PubMed ID: 18601410
    [Abstract] [Full Text] [Related]

  • 10. The influence of surface topography on Kelvin probe force microscopy.
    Sadewasser S, Leendertz C, Streicher F, Lux-Steiner MCh.
    Nanotechnology; 2009 Dec 16; 20(50):505503. PubMed ID: 19934483
    [Abstract] [Full Text] [Related]

  • 11. Determination of effective tip geometries in Kelvin probe force microscopy on thin insulating films on metals.
    Glatzel T, Zimmerli L, Koch S, Such B, Kawai S, Meyer E.
    Nanotechnology; 2009 Jul 01; 20(26):264016. PubMed ID: 19509456
    [Abstract] [Full Text] [Related]

  • 12. Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces.
    Pasche S, Vörös J, Griesser HJ, Spencer ND, Textor M.
    J Phys Chem B; 2005 Sep 22; 109(37):17545-52. PubMed ID: 16853244
    [Abstract] [Full Text] [Related]

  • 13. Topography and work function measurements of thin MgO(001) films on Ag(001) by nc-AFM and KPFM.
    Bieletzki M, Hynninen T, Soini TM, Pivetta M, Henry CR, Foster AS, Esch F, Barth C, Heiz U.
    Phys Chem Chem Phys; 2010 Apr 07; 12(13):3203-9. PubMed ID: 20237710
    [Abstract] [Full Text] [Related]

  • 14. Kelvin probe force microscopy for conducting nanobits of NiO thin films.
    Son JY, Shin YH, Kim H, Cho JH, Jang H.
    Nanotechnology; 2010 May 28; 21(21):215704. PubMed ID: 20431198
    [Abstract] [Full Text] [Related]

  • 15. Relationship between interfacial forces measured by colloid-probe atomic force microscopy and protein resistance of poly(ethylene glycol)-grafted poly(L-lysine) adlayers on niobia surfaces.
    Pasche S, Textor M, Meagher L, Spencer ND, Griesser HJ.
    Langmuir; 2005 Jul 05; 21(14):6508-20. PubMed ID: 15982060
    [Abstract] [Full Text] [Related]

  • 16. Surface chemical properties of nanoscale domains on UV-treated polystyrene-poly(methyl methacrylate) diblock copolymer films studied using scanning force microscopy.
    Ibrahim S, Ito T.
    Langmuir; 2010 Feb 02; 26(3):2119-23. PubMed ID: 19928977
    [Abstract] [Full Text] [Related]

  • 17. Nanoscale characterization of the dielectric charging phenomenon in PECVD silicon nitride thin films with various interfacial structures based on Kelvin probe force microscopy.
    Zaghloul U, Papaioannou GJ, Wang H, Bhushan B, Coccetti F, Pons P, Plana R.
    Nanotechnology; 2011 May 20; 22(20):205708. PubMed ID: 21444948
    [Abstract] [Full Text] [Related]

  • 18. Morphology and self-arraying of SDS and DTAB dried on mica surface.
    Bernardes JS, Rezende CA, Galembeck F.
    Langmuir; 2010 Jun 01; 26(11):7824-32. PubMed ID: 20158224
    [Abstract] [Full Text] [Related]

  • 19. Multifrequency atomic force microscopy: compositional imaging with electrostatic force measurements.
    Magonov S, Alexander J.
    Microsc Microanal; 2011 Aug 01; 17(4):587-97. PubMed ID: 21771386
    [Abstract] [Full Text] [Related]

  • 20. High spatial resolution Kelvin probe force microscopy with coaxial probes.
    Brown KA, Satzinger KJ, Westervelt RM.
    Nanotechnology; 2012 Mar 23; 23(11):115703. PubMed ID: 22369870
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.