These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


129 related items for PubMed ID: 20457241

  • 1. Input-output characteristics of the tectorial membrane in the frog basilar papilla.
    Schoffelen RL, Segenhout JM, van Dijk P.
    Hear Res; 2010 Sep 01; 268(1-2):75-84. PubMed ID: 20457241
    [Abstract] [Full Text] [Related]

  • 2. Tuning of the tectorial membrane in the basilar papilla of the northern leopard frog.
    Schoffelen RL, Segenhout JM, van Dijk P.
    J Assoc Res Otolaryngol; 2009 Sep 01; 10(3):309-20. PubMed ID: 19488819
    [Abstract] [Full Text] [Related]

  • 3. Vibration responses of the organ of Corti and the tectorial membrane to electrical stimulation.
    Nowotny M, Gummer AW.
    J Acoust Soc Am; 2011 Dec 01; 130(6):3852-72. PubMed ID: 22225042
    [Abstract] [Full Text] [Related]

  • 4. What have lizard ears taught us about auditory physiology?
    Manley GA, Köppl C.
    Hear Res; 2008 Apr 01; 238(1-2):3-11. PubMed ID: 17983712
    [Abstract] [Full Text] [Related]

  • 5. Resonant tectorial membrane motion in the inner ear: its crucial role in frequency tuning.
    Gummer AW, Hemmert W, Zenner HP.
    Proc Natl Acad Sci U S A; 1996 Aug 06; 93(16):8727-32. PubMed ID: 8710939
    [Abstract] [Full Text] [Related]

  • 6. A deafness mutation isolates a second role for the tectorial membrane in hearing.
    Legan PK, Lukashkina VA, Goodyear RJ, Lukashkin AN, Verhoeven K, Van Camp G, Russell IJ, Richardson GP.
    Nat Neurosci; 2005 Aug 06; 8(8):1035-42. PubMed ID: 15995703
    [Abstract] [Full Text] [Related]

  • 7. Wever and Lawrence revisited: effects of nulling basilar membrane movement on concomitant whole-nerve action potential.
    Offut G.
    J Aud Res; 1986 Jan 06; 26(1):43-54. PubMed ID: 3610990
    [Abstract] [Full Text] [Related]

  • 8. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti.
    Lee HY, Raphael PD, Xia A, Kim J, Grillet N, Applegate BE, Ellerbee Bowden AK, Oghalai JS.
    J Neurosci; 2016 Aug 03; 36(31):8160-73. PubMed ID: 27488636
    [Abstract] [Full Text] [Related]

  • 9. The 3D structure of the tectorial membrane determined by second-harmonic imaging microscopy.
    Gueta R, Tal E, Silberberg Y, Rousso I.
    J Struct Biol; 2007 Jul 03; 159(1):103-10. PubMed ID: 17467292
    [Abstract] [Full Text] [Related]

  • 10. Detailed f1, f2 area study of distortion product otoacoustic emissions in the frog.
    Meenderink SW, Narins PM, van Dijk P.
    J Assoc Res Otolaryngol; 2005 Mar 03; 6(1):37-47. PubMed ID: 15735935
    [Abstract] [Full Text] [Related]

  • 11. Hair cell regeneration and recovery of function in the avian auditory system.
    Salvi RJ, Chen L, Trautwein P, Powers N, Shero M.
    Scand Audiol Suppl; 1998 Mar 03; 48():7-14. PubMed ID: 9505293
    [Abstract] [Full Text] [Related]

  • 12. Tectorial membrane: a possible sharpening effect on the frequency analysis in the cochlea.
    Zwislocki JJ.
    Acta Otolaryngol; 1979 Mar 03; 87(3-4):267-9. PubMed ID: 443008
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. The effect of acoustic trauma on the tectorial membrane, stereocilia, and hearing sensitivity: possible mechanisms underlying damage, recovery, and protection.
    Canlon B.
    Scand Audiol Suppl; 1988 Mar 03; 27():1-45. PubMed ID: 3043645
    [Abstract] [Full Text] [Related]

  • 15. How are inner hair cells stimulated? Evidence for multiple mechanical drives.
    Guinan JJ.
    Hear Res; 2012 Oct 03; 292(1-2):35-50. PubMed ID: 22959529
    [Abstract] [Full Text] [Related]

  • 16. Modeling 3-D deformation of outer hair cells and their production of the active force in the cochlea.
    Spector AA, Ameen M, Schmiedt RA.
    Biomech Model Mechanobiol; 2002 Oct 03; 1(2):123-35. PubMed ID: 14595545
    [Abstract] [Full Text] [Related]

  • 17. Spatial tuning curves along the chick basilar papilla in normal and sound-exposed ears.
    Lifshitz J, Furman AC, Altman KW, Saunders JC.
    J Assoc Res Otolaryngol; 2004 Jun 03; 5(2):171-84. PubMed ID: 15357419
    [Abstract] [Full Text] [Related]

  • 18. A model for the relation between stimulus frequency and spontaneous otoacoustic emissions in lizard papillae.
    Wit HP, van Dijk P, Manley GA.
    J Acoust Soc Am; 2012 Nov 03; 132(5):3273-9. PubMed ID: 23145611
    [Abstract] [Full Text] [Related]

  • 19. Neurophysiological evidence for a traveling wave in the amphibian inner ear.
    Hillery CM, Narins PM.
    Science; 1984 Sep 07; 225(4666):1037-9. PubMed ID: 6474164
    [Abstract] [Full Text] [Related]

  • 20. Quantitative light and scanning electron microscopic study of the developing auditory organs in the bullfrog: implications on their functional characteristics.
    Shofner WP, Feng AS.
    J Comp Neurol; 1984 Mar 20; 224(1):141-54. PubMed ID: 6609173
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.