These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


298 related items for PubMed ID: 20457734

  • 1. Voluntary activation of ankle muscles is accompanied by subcortical facilitation of their antagonists.
    Geertsen SS, Zuur AT, Nielsen JB.
    J Physiol; 2010 Jul 01; 588(Pt 13):2391-402. PubMed ID: 20457734
    [Abstract] [Full Text] [Related]

  • 2. Spinal inhibition of descending command to soleus motoneurons is removed prior to dorsiflexion.
    Geertsen SS, van de Ruit M, Grey MJ, Nielsen JB.
    J Physiol; 2011 Dec 01; 589(Pt 23):5819-31. PubMed ID: 21986208
    [Abstract] [Full Text] [Related]

  • 3. Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles.
    Perez MA, Lundbye-Jensen J, Nielsen JB.
    J Neurophysiol; 2007 Dec 01; 98(6):3677-87. PubMed ID: 17942616
    [Abstract] [Full Text] [Related]

  • 4. Cortical involvement in anticipatory postural reactions in man.
    Petersen TH, Rosenberg K, Petersen NC, Nielsen JB.
    Exp Brain Res; 2009 Feb 01; 193(2):161-71. PubMed ID: 18956177
    [Abstract] [Full Text] [Related]

  • 5. Agonist-Antagonist Coactivation Enhances Corticomotor Excitability of Ankle Muscles.
    Kesar TM, Tan A, Eicholtz S, Baker K, Xu J, Anderson JT, Wolf SL, Borich MR.
    Neural Plast; 2019 Feb 01; 2019():5190671. PubMed ID: 31565049
    [Abstract] [Full Text] [Related]

  • 6. A stable late soleus EMG response elicited by cortical stimulation during voluntary ankle dorsiflexion.
    Ertekin C, Ertaş M, Efendi H, Larsson LE, Sirin H, Araç N, Toygar A, Demir Y.
    Electroencephalogr Clin Neurophysiol; 1995 Oct 01; 97(5):275-83. PubMed ID: 7489691
    [Abstract] [Full Text] [Related]

  • 7. Contributions to the understanding of gait control.
    Simonsen EB.
    Dan Med J; 2014 Apr 01; 61(4):B4823. PubMed ID: 24814597
    [Abstract] [Full Text] [Related]

  • 8. Convergence of flexor reflex and corticospinal inputs on tibialis anterior network in humans.
    Mackey AS, Uttaro D, McDonough MP, Krivis LI, Knikou M.
    Clin Neurophysiol; 2016 Jan 01; 127(1):706-715. PubMed ID: 26122072
    [Abstract] [Full Text] [Related]

  • 9. Focal depression of cortical excitability induced by fatiguing muscle contraction: a transcranial magnetic stimulation study.
    McKay WB, Tuel SM, Sherwood AM, Stokić DS, Dimitrijević MR.
    Exp Brain Res; 1995 Jan 01; 105(2):276-82. PubMed ID: 7498380
    [Abstract] [Full Text] [Related]

  • 10. Peripheral sensory activation of cortical circuits in the leg motor cortex of man.
    Roy FD, Gorassini MA.
    J Physiol; 2008 Sep 01; 586(17):4091-105. PubMed ID: 18599540
    [Abstract] [Full Text] [Related]

  • 11. The nature of facilitation of leg muscle motor evoked potentials by knee flexion.
    Izumi SI, Furukawa T, Koyama Y, Ishida A.
    Somatosens Mot Res; 2001 Sep 01; 18(4):322-9. PubMed ID: 11794734
    [Abstract] [Full Text] [Related]

  • 12. Responses of ankle extensor and flexor motoneurons to transcranial magnetic stimulation.
    Bawa P, Chalmers GR, Stewart H, Eisen AA.
    J Neurophysiol; 2002 Jul 01; 88(1):124-32. PubMed ID: 12091538
    [Abstract] [Full Text] [Related]

  • 13. Transcutaneous spinal direct current stimulation increases corticospinal transmission and enhances voluntary motor output in humans.
    Yamaguchi T, Beck MM, Therkildsen ER, Svane C, Forman C, Lorentzen J, Conway BA, Lundbye-Jensen J, Geertsen SS, Nielsen JB.
    Physiol Rep; 2020 Aug 01; 8(16):e14531. PubMed ID: 32812363
    [Abstract] [Full Text] [Related]

  • 14. Modulation of lower limb muscle corticospinal excitability during various types of motor imagery.
    Ishikawa K, Kaneko N, Sasaki A, Nakazawa K.
    Neurosci Lett; 2024 Jan 01; 818():137551. PubMed ID: 37926294
    [Abstract] [Full Text] [Related]

  • 15. Modulation of transmission in the corticospinal and group Ia afferent pathways to soleus motoneurons during bicycling.
    Pyndt HS, Nielsen JB.
    J Neurophysiol; 2003 Jan 01; 89(1):304-14. PubMed ID: 12522181
    [Abstract] [Full Text] [Related]

  • 16. Modulation of presynaptic inhibition and disynaptic reciprocal Ia inhibition during voluntary movement in spasticity.
    Morita H, Crone C, Christenhuis D, Petersen NT, Nielsen JB.
    Brain; 2001 Apr 01; 124(Pt 4):826-37. PubMed ID: 11287381
    [Abstract] [Full Text] [Related]

  • 17. Corticospinal excitability of tibialis anterior and soleus differs during passive ankle movement.
    Škarabot J, Ansdell P, Brownstein CG, Hicks KM, Howatson G, Goodall S, Durbaba R.
    Exp Brain Res; 2019 Sep 01; 237(9):2239-2254. PubMed ID: 31243484
    [Abstract] [Full Text] [Related]

  • 18. Differential changes in corticospinal and Ia input to tibialis anterior and soleus motor neurones during voluntary contraction in man.
    Morita H, Olivier E, Baumgarten J, Petersen NT, Christensen LO, Nielsen JB.
    Acta Physiol Scand; 2000 Sep 01; 170(1):65-76. PubMed ID: 10971225
    [Abstract] [Full Text] [Related]

  • 19. Cortical and spinal control of ankle joint muscles before and during gait initiation.
    Hiraoka K, Abe K.
    Somatosens Mot Res; 2007 Sep 01; 24(3):127-33. PubMed ID: 17853055
    [Abstract] [Full Text] [Related]

  • 20. On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking.
    Ung RV, Imbeault MA, Ethier C, Brizzi L, Capaday C.
    J Neurophysiol; 2005 Aug 01; 94(2):1133-42. PubMed ID: 15829598
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.