These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
94 related items for PubMed ID: 20465262
1. Role of divalent cations on deposition of Cryptosporidium parvum oocysts on natural organic matter surfaces. Janjaroen D, Liu Y, Kuhlenschmidt MS, Kuhlenschmidt TB, Nguyen TH. Environ Sci Technol; 2010 Jun 15; 44(12):4519-24. PubMed ID: 20465262 [Abstract] [Full Text] [Related]
2. Deposition of Cryptosporidium parvum oocysts on natural organic matter surfaces: microscopic evidence for secondary minimum deposition in a radial stagnation point flow cell. Liu Y, Janjaroen D, Kuhlenschmidt MS, Kuhlenschmidt TB, Nguyen TH. Langmuir; 2009 Feb 03; 25(3):1594-605. PubMed ID: 19133757 [Abstract] [Full Text] [Related]
3. Deposition kinetics of bacteriophage MS2 to natural organic matter: role of divalent cations. Pham M, Mintz EA, Nguyen TH. J Colloid Interface Sci; 2009 Oct 01; 338(1):1-9. PubMed ID: 19608192 [Abstract] [Full Text] [Related]
4. Role of surface proteins in the deposition kinetics of Cryptosporidium parvum oocysts. Kuznar ZA, Elimelech M. Langmuir; 2005 Jan 18; 21(2):710-6. PubMed ID: 15641844 [Abstract] [Full Text] [Related]
5. Adhesion kinetics of viable Cryptosporidium parvum oocysts to quartz surfaces. Kuznar ZA, Elimelech M. Environ Sci Technol; 2004 Dec 15; 38(24):6839-45. PubMed ID: 15669347 [Abstract] [Full Text] [Related]
6. Deposition and aggregation kinetics of rotavirus in divalent cation solutions. Gutierrez L, Mylon SE, Nash B, Nguyen TH. Environ Sci Technol; 2010 Jun 15; 44(12):4552-7. PubMed ID: 20481597 [Abstract] [Full Text] [Related]
7. Cryptosporidium oocyst surface macromolecules significantly hinder oocyst attachment. Kuznar ZA, Elimelech M. Environ Sci Technol; 2006 Mar 15; 40(6):1837-42. PubMed ID: 16570605 [Abstract] [Full Text] [Related]
8. Composition and conformation of Cryptosporidium parvum oocyst wall surface macromolecules and their effect on adhesion kinetics of oocysts on quartz surface. Liu Y, Kuhlenschmidt MS, Kuhlenschmidt TB, Nguyen TH. Biomacromolecules; 2010 Aug 09; 11(8):2109-15. PubMed ID: 20690718 [Abstract] [Full Text] [Related]
9. Deposition kinetics of zinc oxide nanoparticles on natural organic matter coated silica surfaces. Jiang X, Tong M, Li H, Yang K. J Colloid Interface Sci; 2010 Oct 15; 350(2):427-34. PubMed ID: 20673672 [Abstract] [Full Text] [Related]
10. Influence of organic carbon loading, sediment associated metal oxide content and sediment grain size distributions upon Cryptosporidium parvum removal during riverbank filtration operations, Sonoma County, CA. Metge DW, Harvey RW, Aiken GR, Anders R, Lincoln G, Jasperse J. Water Res; 2010 Feb 15; 44(4):1126-37. PubMed ID: 20116824 [Abstract] [Full Text] [Related]
11. Coupled factors influencing the transport and retention of Cryptosporidium parvum oocysts in saturated porous media. Kim HN, Walker SL, Bradford SA. Water Res; 2010 Feb 15; 44(4):1213-23. PubMed ID: 19854467 [Abstract] [Full Text] [Related]
12. Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media. Mohanram A, Ray C, Harvey RW, Metge DW, Ryan JN, Chorover J, Eberl DD. Water Res; 2010 Oct 15; 44(18):5334-44. PubMed ID: 20637489 [Abstract] [Full Text] [Related]
13. Amphiphile disruption of pathogen attachment at the hematite (α-Fe2O3)-water interface. Gao X, Chorover J. Langmuir; 2011 May 17; 27(10):5936-43. PubMed ID: 21488611 [Abstract] [Full Text] [Related]
14. Role of solution chemistry and ion valence on the adhesion kinetics of groundwater and marine bacteria. Chen G, Walker SL. Langmuir; 2007 Jun 19; 23(13):7162-9. PubMed ID: 17523680 [Abstract] [Full Text] [Related]
15. Modeling Cryptosporidium parvum oocyst inactivation and bromate in a flow-through ozone contactor treating natural water. Kim JH, Elovitz MS, von Gunten U, Shukairy HM, Mariñas BJ. Water Res; 2007 Jan 19; 41(2):467-75. PubMed ID: 17123571 [Abstract] [Full Text] [Related]
16. Effects of sediment-associated extractable metals, degree of sediment grain sorting, and dissolved organic carbon upon Cryptosporidium parvum removal and transport within riverbank filtration sediments, Sonoma County, California. Metge DW, Harvey RW, Aiken GR, Anders R, Lincoln G, Jasperse J, Hill MC. Environ Sci Technol; 2011 Jul 01; 45(13):5587-95. PubMed ID: 21634424 [Abstract] [Full Text] [Related]
17. Investigation of the interaction force between Cryptosporidium parvum oocysts and solid surfaces. Byrd TL, Walz JY. Langmuir; 2007 Jul 03; 23(14):7475-83. PubMed ID: 17555335 [Abstract] [Full Text] [Related]
18. Comparison of viability and infectivity of Cryptosporidium parvum oocysts stored in potassium dichromate solution and chlorinated tap water. Chen F, Huang K, Qin S, Zhao Y, Pan C. Vet Parasitol; 2007 Nov 30; 150(1-2):13-7. PubMed ID: 17954011 [Abstract] [Full Text] [Related]
19. Deposition kinetics of bacteriophage MS2 on a silica surface coated with natural organic matter in a radial stagnation point flow cell. Yuan B, Pham M, Nguyen TH. Environ Sci Technol; 2008 Oct 15; 42(20):7628-33. PubMed ID: 18983085 [Abstract] [Full Text] [Related]
20. Role of collector alternating charged patches on transport of Cryptosporidium parvum oocysts in a patchwise charged heterogeneous micromodel. Liu Y, Zhang C, Hu D, Kuhlenschmidt MS, Kuhlenschmidt TB, Mylon SE, Kong R, Bhargava R, Nguyen TH. Environ Sci Technol; 2013 Mar 19; 47(6):2670-8. PubMed ID: 23373745 [Abstract] [Full Text] [Related] Page: [Next] [New Search]