These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
307 related items for PubMed ID: 20467254
1. Calcite-forming bacteria for compressive strength improvement in mortar. Park SJ, Park YM, Chun WY, Kim WJ, Ghim SY. J Microbiol Biotechnol; 2010 Apr; 20(4):782-8. PubMed ID: 20467254 [Abstract] [Full Text] [Related]
3. Biocementation of Concrete Pavements Using Microbially Induced Calcite Precipitation. Jeong JH, Jo YS, Park CS, Kang CH, So JS. J Microbiol Biotechnol; 2017 Jul 28; 27(7):1331-1335. PubMed ID: 28478659 [Abstract] [Full Text] [Related]
4. Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete. Kim HJ, Eom HJ, Park C, Jung J, Shin B, Kim W, Chung N, Choi IG, Park W. J Microbiol Biotechnol; 2016 Mar 28; 26(3):540-8. PubMed ID: 26699752 [Abstract] [Full Text] [Related]
5. Application of alkaliphilic biofilm-forming bacteria to improve compressive strength of cement-sand mortar. Park SJ, Chun WY, Kim WJ, Ghim SY. J Microbiol Biotechnol; 2012 Mar 28; 22(3):385-9. PubMed ID: 22450795 [Abstract] [Full Text] [Related]
6. Characterization of three antifungal calcite-forming bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, derived from the Korean islands, Dokdo and their application on mortar. Park JM, Park SJ, Ghim SY. J Microbiol Biotechnol; 2013 Sep 28; 23(9):1269-78. PubMed ID: 23727794 [Abstract] [Full Text] [Related]
7. Bacteria incorporated with calcium lactate pentahydrate to improve the mortar properties and self-healing occurrence. Chaerun SK, Syarif R, Wattimena RK. Sci Rep; 2020 Oct 21; 10(1):17873. PubMed ID: 33087729 [Abstract] [Full Text] [Related]
9. Application of Bacillus subtilis 168 as a multifunctional agent for improvement of the durability of cement mortar. Park SJ, Park JM, Kim WJ, Ghim SY. J Microbiol Biotechnol; 2012 Nov 24; 22(11):1568-74. PubMed ID: 23124349 [Abstract] [Full Text] [Related]
10. Isolation and identification of bacteria to improve the strength of concrete. Krishnapriya S, Venkatesh Babu DL, G PA. Microbiol Res; 2015 May 24; 174():48-55. PubMed ID: 25946328 [Abstract] [Full Text] [Related]
11. Monitoring biocalcification potential of Lysinibacillus sp. isolated from alluvial soils for improved compressive strength of concrete. Vashisht R, Attri S, Sharma D, Shukla A, Goel G. Microbiol Res; 2018 Mar 24; 207():226-231. PubMed ID: 29458858 [Abstract] [Full Text] [Related]
12. Comparison of calcium carbonate production by bacterial isolates from recycled aggregates. Moita GC, da Silva Liduino V, Sérvulo EFC, Bassin JP, Toledo Filho RD. Environ Sci Pollut Res Int; 2024 May 24; 31(25):37810-37823. PubMed ID: 38789704 [Abstract] [Full Text] [Related]
17. Biocalcification by Piezotolerant Bacillus sp. NIOTVJ5 Isolated from Deep Sea Sediment and its Influence on the Strength of Concrete Specimens. Rangamaran VR, Shanmugam VK. Mar Biotechnol (NY); 2019 Apr 24; 21(2):161-170. PubMed ID: 30535928 [Abstract] [Full Text] [Related]