These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Msadek T, Dartois V, Kunst F, Herbaud ML, Denizot F, Rapoport G. Mol Microbiol; 1998 Mar; 27(5):899-914. PubMed ID: 9535081 [Abstract] [Full Text] [Related]
23. Identification of a rhodanese-like protein involved in thiouridine biosynthesis in Thermus thermophilus tRNA. Shigi N, Asai SI, Watanabe K. FEBS Lett; 2016 Dec; 590(24):4628-4637. PubMed ID: 27878988 [Abstract] [Full Text] [Related]
24. Redox Behavior of the S-Adenosylmethionine (SAM)-Binding Fe-S Cluster in Methylthiotransferase RimO, toward Understanding Dual SAM Activity. Molle T, Moreau Y, Clemancey M, Forouhar F, Ravanat JL, Duraffourg N, Fourmond V, Latour JM, Gambarelli S, Mulliez E, Atta M. Biochemistry; 2016 Oct 18; 55(41):5798-5808. PubMed ID: 27677419 [Abstract] [Full Text] [Related]
25. The Structure of Escherichia coli TcdA (Also Known As CsdL) Reveals a Novel Topology and Provides Insight into the tRNA Binding Surface Required for N(6)-Threonylcarbamoyladenosine Dehydratase Activity. Kim S, Lee H, Park S. J Mol Biol; 2015 Sep 25; 427(19):3074-85. PubMed ID: 26101842 [Abstract] [Full Text] [Related]
26. Structural characterization of B. subtilis m1A22 tRNA methyltransferase TrmK: insights into tRNA recognition. Dégut C, Roovers M, Barraud P, Brachet F, Feller A, Larue V, Al Refaii A, Caillet J, Droogmans L, Tisné C. Nucleic Acids Res; 2019 May 21; 47(9):4736-4750. PubMed ID: 30931478 [Abstract] [Full Text] [Related]
27. Transformations of the FeS Clusters of the Methylthiotransferases MiaB and RimO, Detected by Direct Electrochemistry. Maiocco SJ, Arcinas AJ, Landgraf BJ, Lee KH, Booker SJ, Elliott SJ. Biochemistry; 2016 Oct 04; 55(39):5531-5536. PubMed ID: 27598886 [Abstract] [Full Text] [Related]
28. The crystal structure of the reduced, Zn2+-bound form of the B. subtilis Hsp33 chaperone and its implications for the activation mechanism. Janda I, Devedjiev Y, Derewenda U, Dauter Z, Bielnicki J, Cooper DR, Graf PC, Joachimiak A, Jakob U, Derewenda ZS. Structure; 2004 Oct 04; 12(10):1901-7. PubMed ID: 15458638 [Abstract] [Full Text] [Related]
29. Identification of 2-methylthio cyclic N6-threonylcarbamoyladenosine (ms2ct6A) as a novel RNA modification at position 37 of tRNAs. Kang BI, Miyauchi K, Matuszewski M, D'Almeida GS, Rubio MAT, Alfonzo JD, Inoue K, Sakaguchi Y, Suzuki T, Sochacka E, Suzuki T. Nucleic Acids Res; 2017 Feb 28; 45(4):2124-2136. PubMed ID: 27913733 [Abstract] [Full Text] [Related]
33. Recognition of individual procaryotic and eucaryotic transfer-ribonucleic acids by B subtilis adenine-1-methyltransferase specific for the dihydrouridine loop. Kersten H, Raettig R, Weissenbach J, Dirheimer G. Nucleic Acids Res; 1978 Aug 28; 5(8):3033-42. PubMed ID: 99729 [Abstract] [Full Text] [Related]
37. Methylation of an adenosine in the D-loop of specific transfer RNAs from yeast by a procaryotic tRNA (adenine-1) methyltransferase. Raettig R, Kersten H, Weissenbach J, Dirheimer G. Nucleic Acids Res; 1977 Jun 28; 4(6):1769-82. PubMed ID: 408794 [Abstract] [Full Text] [Related]
38. Substrate tRNA recognition mechanism of eubacterial tRNA (m1A58) methyltransferase (TrmI). Takuma H, Ushio N, Minoji M, Kazayama A, Shigi N, Hirata A, Tomikawa C, Ochi A, Hori H. J Biol Chem; 2015 Feb 27; 290(9):5912-25. PubMed ID: 25593312 [Abstract] [Full Text] [Related]