These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


176 related items for PubMed ID: 20472640

  • 41. Crystal structure of a bifunctional deaminase and reductase from Bacillus subtilis involved in riboflavin biosynthesis.
    Chen SC, Chang YC, Lin CH, Lin CH, Liaw SH.
    J Biol Chem; 2006 Mar 17; 281(11):7605-13. PubMed ID: 16308316
    [Abstract] [Full Text] [Related]

  • 42. Two exposed amino acid residues confer thermostability on a cold shock protein.
    Perl D, Mueller U, Heinemann U, Schmid FX.
    Nat Struct Biol; 2000 May 17; 7(5):380-3. PubMed ID: 10802734
    [Abstract] [Full Text] [Related]

  • 43. Structural and motional contributions of the Bacillus subtilis ClpC N-domain to adaptor protein interactions.
    Kojetin DJ, McLaughlin PD, Thompson RJ, Dubnau D, Prepiak P, Rance M, Cavanagh J.
    J Mol Biol; 2009 Apr 03; 387(3):639-52. PubMed ID: 19361434
    [Abstract] [Full Text] [Related]

  • 44. Structural analysis of the Bacillus subtilis delta factor: a protein polyanion which displaces RNA from RNA polymerase.
    López de Saro FJ, Woody AY, Helmann JD.
    J Mol Biol; 1995 Sep 15; 252(2):189-202. PubMed ID: 7545758
    [Abstract] [Full Text] [Related]

  • 45. Localization of general and regulatory proteolysis in Bacillus subtilis cells.
    Kirstein J, Strahl H, Molière N, Hamoen LW, Turgay K.
    Mol Microbiol; 2008 Nov 15; 70(3):682-94. PubMed ID: 18786145
    [Abstract] [Full Text] [Related]

  • 46. The yjoB gene of Bacillus subtilis encodes a protein that is a novel member of the AAA family.
    Kotschwar M, Diermeier S, Schumann W.
    FEMS Microbiol Lett; 2004 Jan 30; 230(2):241-9. PubMed ID: 14757246
    [Abstract] [Full Text] [Related]

  • 47. Roles of the two ClpC ATP binding sites in the regulation of competence and the stress response.
    Turgay K, Persuh M, Hahn J, Dubnau D.
    Mol Microbiol; 2001 Nov 30; 42(3):717-27. PubMed ID: 11722737
    [Abstract] [Full Text] [Related]

  • 48. The CDK5 repressor CDK5RAP1 is a methylthiotransferase acting on nuclear and mitochondrial RNA.
    Reiter V, Matschkal DM, Wagner M, Globisch D, Kneuttinger AC, Müller M, Carell T.
    Nucleic Acids Res; 2012 Jul 30; 40(13):6235-40. PubMed ID: 22422838
    [Abstract] [Full Text] [Related]

  • 49. ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis.
    Derré I, Rapoport G, Devine K, Rose M, Msadek T.
    Mol Microbiol; 1999 May 30; 32(3):581-93. PubMed ID: 10320580
    [Abstract] [Full Text] [Related]

  • 50. Alkaline pH-dependent differential unfolding characteristics of mesophilic and thermophilic homologs of dimeric serine hydroxymethyltransferase.
    Bhatt AN, Bhakuni V, Kumar A, Khan MY, Siddiqi MI.
    Biochim Biophys Acta; 2010 Jun 30; 1804(6):1294-300. PubMed ID: 20152942
    [Abstract] [Full Text] [Related]

  • 51. New light on methylthiolation reactions.
    Fontecave M, Mulliez E, Atta M.
    Chem Biol; 2008 Mar 30; 15(3):209-10. PubMed ID: 18355719
    [Abstract] [Full Text] [Related]

  • 52. Construction and analyses of mutant ftsH alleles of Bacillus subtilis involving the ATPase- and Zn-binding domains.
    Kotschwar M, Harfst E, Ohanjan T, Schumann W.
    Curr Microbiol; 2004 Sep 30; 49(3):180-5. PubMed ID: 15386101
    [Abstract] [Full Text] [Related]

  • 53. Structures of lipoyl synthase reveal a compact active site for controlling sequential sulfur insertion reactions.
    Harmer JE, Hiscox MJ, Dinis PC, Fox SJ, Iliopoulos A, Hussey JE, Sandy J, Van Beek FT, Essex JW, Roach PL.
    Biochem J; 2014 Nov 15; 464(1):123-33. PubMed ID: 25100160
    [Abstract] [Full Text] [Related]

  • 54. Crystal structure of Bacillus subtilis TrmB, the tRNA (m7G46) methyltransferase.
    Zegers I, Gigot D, van Vliet F, Tricot C, Aymerich S, Bujnicki JM, Kosinski J, Droogmans L.
    Nucleic Acids Res; 2006 Nov 15; 34(6):1925-34. PubMed ID: 16600901
    [Abstract] [Full Text] [Related]

  • 55. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions.
    Wunderlich M, Martin A, Schmid FX.
    J Mol Biol; 2005 Apr 15; 347(5):1063-76. PubMed ID: 15784264
    [Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58. The Bacillus subtilis yabG gene is transcribed by SigK RNA polymerase during sporulation, and yabG mutant spores have altered coat protein composition.
    Takamatsu H, Kodama T, Imamura A, Asai K, Kobayashi K, Nakayama T, Ogasawara N, Watabe K.
    J Bacteriol; 2000 Apr 15; 182(7):1883-8. PubMed ID: 10714992
    [Abstract] [Full Text] [Related]

  • 59. Genetic and physiological relationships among the miaA gene, 2-methylthio-N6-(delta 2-isopentenyl)-adenosine tRNA modification, and spontaneous mutagenesis in Escherichia coli K-12.
    Connolly DM, Winkler ME.
    J Bacteriol; 1989 Jun 15; 171(6):3233-46. PubMed ID: 2656644
    [Abstract] [Full Text] [Related]

  • 60. Stereochemical Course of the Reaction Catalyzed by RimO, a Radical SAM Methylthiotransferase.
    Landgraf BJ, Booker SJ.
    J Am Chem Soc; 2016 Mar 09; 138(9):2889-92. PubMed ID: 26871608
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.