These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
160 related items for PubMed ID: 20477886
1. Metabolic pathway of α-ketoglutarate in Lactobacillus sanfranciscensis and Lactobacillus reuteri during sourdough fermentation. Zhang C, Gänzle MG. J Appl Microbiol; 2010 Oct; 109(4):1301-10. PubMed ID: 20477886 [Abstract] [Full Text] [Related]
2. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation. Su MS, Schlicht S, Gänzle MG. Microb Cell Fact; 2011 Aug 30; 10 Suppl 1(Suppl 1):S8. PubMed ID: 21995488 [Abstract] [Full Text] [Related]
3. Microbial ecology of sorghum sourdoughs: effect of substrate supply and phenolic compounds on composition of fermentation microbiota. Sekwati-Monang B, Valcheva R, Gänzle MG. Int J Food Microbiol; 2012 Oct 15; 159(3):240-6. PubMed ID: 23107503 [Abstract] [Full Text] [Related]
4. Influence of peptide supply and cosubstrates on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451(T) and Lactobacillus plantarum TMW1.468. Vermeulen N, Ganzle MG, Vogel RF. J Agric Food Chem; 2006 May 31; 54(11):3832-9. PubMed ID: 16719504 [Abstract] [Full Text] [Related]
5. Lifestyles of sourdough lactobacilli - Do they matter for microbial ecology and bread quality? Gänzle MG, Zheng J. Int J Food Microbiol; 2019 Aug 02; 302():15-23. PubMed ID: 30172443 [Abstract] [Full Text] [Related]
6. Synthesis of Taste-Active γ-Glutamyl Dipeptides during Sourdough Fermentation by Lactobacillus reuteri. Zhao CJ, Gänzle MG. J Agric Food Chem; 2016 Oct 12; 64(40):7561-7568. PubMed ID: 27641253 [Abstract] [Full Text] [Related]
7. Effect of lineage-specific metabolic traits of Lactobacillus reuteri on sourdough microbial ecology. Lin XB, Gänzle MG. Appl Environ Microbiol; 2014 Sep 12; 80(18):5782-9. PubMed ID: 25015888 [Abstract] [Full Text] [Related]
8. Effect of Glutathione Dehydrogenase of Lactobacillus sanfranciscensis on Gluten Properties and Bread Volume in Type I Wheat Sourdough Bread. Xu D, Tang K, Hu Y, Xu X, Gänzle MG. J Agric Food Chem; 2018 Sep 19; 66(37):9770-9776. PubMed ID: 30175916 [Abstract] [Full Text] [Related]
9. Glutamine deamidation by cereal-associated lactic acid bacteria. Vermeulen N, Gänzle MG, Vogel RF. J Appl Microbiol; 2007 Oct 19; 103(4):1197-205. PubMed ID: 17897224 [Abstract] [Full Text] [Related]
10. Evidence for formation of heterooligosaccharides by Lactobacillus sanfranciscensis during growth in wheat sourdough. Tieking M, Kühnl W, Gänzle MG. J Agric Food Chem; 2005 Apr 06; 53(7):2456-61. PubMed ID: 15796579 [Abstract] [Full Text] [Related]
11. The biodiversity of lactic acid bacteria in Greek traditional wheat sourdoughs is reflected in both composition and metabolite formation. De Vuyst L, Schrijvers V, Paramithiotis S, Hoste B, Vancanneyt M, Swings J, Kalantzopoulos G, Tsakalidou E, Messens W. Appl Environ Microbiol; 2002 Dec 06; 68(12):6059-69. PubMed ID: 12450829 [Abstract] [Full Text] [Related]
12. Lactobacillus reuteri CRL 1100 as starter culture for wheat dough fermentation. Gerez CL, Cuezzo S, Rollán G, Font de Valdez G. Food Microbiol; 2008 Apr 06; 25(2):253-9. PubMed ID: 18206767 [Abstract] [Full Text] [Related]
13. Contribution of reutericyclin production to the stable persistence of Lactobacillus reuteri in an industrial sourdough fermentation. Gänzle MG, Vogel RF. Int J Food Microbiol; 2003 Jan 15; 80(1):31-45. PubMed ID: 12430769 [Abstract] [Full Text] [Related]
14. Glutathione reductase from Lactobacillus sanfranciscensis DSM20451T: contribution to oxygen tolerance and thiol exchange reactions in wheat sourdoughs. Jänsch A, Korakli M, Vogel RF, Gänzle MG. Appl Environ Microbiol; 2007 Jul 15; 73(14):4469-76. PubMed ID: 17496130 [Abstract] [Full Text] [Related]
15. Arginine catabolism by sourdough lactic acid bacteria: purification and characterization of the arginine deiminase pathway enzymes from Lactobacillus sanfranciscensis CB1. De Angelis M, Mariotti L, Rossi J, Servili M, Fox PF, Rollán G, Gobbetti M. Appl Environ Microbiol; 2002 Dec 15; 68(12):6193-201. PubMed ID: 12450844 [Abstract] [Full Text] [Related]
16. Contribution of γ-Glutamyl-Cysteine Ligases of Limosilactobacillus reuteri to the Formation of Kokumi-Active γ-Glutamyl Dipeptides in Sourdough Bread. Xie J, Zhao Z, Gänzle MG. J Agric Food Chem; 2024 Mar 20; 72(11):5935-5943. PubMed ID: 38469860 [Abstract] [Full Text] [Related]
17. Composition and function of sourdough microbiota: From ecological theory to bread quality. Gänzle M, Ripari V. Int J Food Microbiol; 2016 Dec 19; 239():19-25. PubMed ID: 27240932 [Abstract] [Full Text] [Related]
18. Biochemical analysis of respiratory metabolism in the heterofermentative Lactobacillus spicheri and Lactobacillus reuteri. Ianniello RG, Zheng J, Zotta T, Ricciardi A, Gänzle MG. J Appl Microbiol; 2015 Sep 19; 119(3):763-75. PubMed ID: 25996113 [Abstract] [Full Text] [Related]
19. Effect of Glutathione on the Taste and Texture of Type I Sourdough Bread. Tang KX, Zhao CJ, Gänzle MG. J Agric Food Chem; 2017 May 31; 65(21):4321-4328. PubMed ID: 28502176 [Abstract] [Full Text] [Related]
20. Sucrose metabolism and exopolysaccharide production in wheat and rye sourdoughs by Lactobacillus sanfranciscensis. Korakli M, Rossmann A, Gänzle MG, Vogel RF. J Agric Food Chem; 2001 Nov 31; 49(11):5194-200. PubMed ID: 11714302 [Abstract] [Full Text] [Related] Page: [Next] [New Search]