These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


215 related items for PubMed ID: 20480039

  • 1. Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a γ-diketone reductase from the yeast Saccharomyces cerevisiae serving as an example.
    Katzberg M, Skorupa-Parachin N, Gorwa-Grauslund MF, Bertau M.
    Int J Mol Sci; 2010 Apr 14; 11(4):1735-58. PubMed ID: 20480039
    [Abstract] [Full Text] [Related]

  • 2. Highly efficient and stereoselective biosynthesis of (2S,5S)-hexanediol with a dehydrogenase from Saccharomyces cerevisiae.
    Müller M, Katzberg M, Bertau M, Hummel W.
    Org Biomol Chem; 2010 Apr 07; 8(7):1540-50. PubMed ID: 20237665
    [Abstract] [Full Text] [Related]

  • 3. Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH.
    Moon J, Liu ZL.
    Enzyme Microb Technol; 2012 Feb 10; 50(2):115-20. PubMed ID: 22226197
    [Abstract] [Full Text] [Related]

  • 4. Biocatalytical production of (5S)-hydroxy-2-hexanone.
    Katzberg M, Wechler K, Müller M, Dünkelmann P, Stohrer J, Hummel W, Bertau M.
    Org Biomol Chem; 2009 Jan 21; 7(2):304-14. PubMed ID: 19109675
    [Abstract] [Full Text] [Related]

  • 5. Structural insights into the cofactor-assisted substrate recognition of yeast methylglyoxal/isovaleraldehyde reductase Gre2.
    Guo PC, Bao ZZ, Ma XX, Xia Q, Li WF.
    Biochim Biophys Acta; 2014 Sep 21; 1844(9):1486-92. PubMed ID: 24879127
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Ser67Asp and His68Asp substitutions in candida parapsilosis carbonyl reductase alter the coenzyme specificity and enantioselectivity of ketone reduction.
    Zhang R, Xu Y, Sun Y, Zhang W, Xiao R.
    Appl Environ Microbiol; 2009 Apr 21; 75(7):2176-83. PubMed ID: 19201968
    [Abstract] [Full Text] [Related]

  • 9. Development of Saccharomyces cerevisiae reductase YOL151W mutants suitable for chiral alcohol synthesis using an NADH cofactor regeneration system.
    Yoon SA, Jung J, Park S, Kim HK.
    J Microbiol Biotechnol; 2013 Feb 21; 23(2):218-24. PubMed ID: 23412065
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Reversal of coenzyme specificity of 2,3-butanediol dehydrogenase from Saccharomyces cerevisae and in vivo functional analysis.
    Ehsani M, Fernández MR, Biosca JA, Dequin S.
    Biotechnol Bioeng; 2009 Oct 01; 104(2):381-9. PubMed ID: 19507198
    [Abstract] [Full Text] [Related]

  • 12. Enantioselective Synthesis of Vicinal (R,R)-Diols by Saccharomyces cerevisiae Butanediol Dehydrogenase.
    Calam E, González-Roca E, Fernández MR, Dequin S, Parés X, Virgili A, Biosca JA.
    Appl Environ Microbiol; 2016 Jan 04; 82(6):1706-1721. PubMed ID: 26729717
    [Abstract] [Full Text] [Related]

  • 13. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity.
    Lerchner A, Jarasch A, Meining W, Schiefner A, Skerra A.
    Biotechnol Bioeng; 2013 Nov 04; 110(11):2803-14. PubMed ID: 23686719
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Crystallization and preliminary crystallographic analysis of Gre2p, an NADP(+)-dependent alcohol dehydrogenase from Saccharomyces cerevisiae.
    Breicha K, Müller M, Hummel W, Niefind K.
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Jul 01; 66(Pt 7):838-41. PubMed ID: 20606287
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Efficient bioreduction of bicyclo[2.2.2]octane-2,5-dione and bicyclo[2.2.2]oct-7-ene-2,5-dione by genetically engineered Saccharomyces cerevisiae.
    Friberg A, Johanson T, Franzén J, Gorwa-Grauslund MF, Frejd T.
    Org Biomol Chem; 2006 Jun 07; 4(11):2304-12. PubMed ID: 16729141
    [Abstract] [Full Text] [Related]

  • 18. Recombinant S. cerevisiae expressing Old Yellow Enzymes from non-conventional yeasts: an easy system for selective reduction of activated alkenes.
    Romano D, Contente ML, Molinari F, Eberini I, Ruvutuso E, Sensi C, Amaretti A, Rossi M, Raimondi S.
    Microb Cell Fact; 2014 Apr 25; 13():60. PubMed ID: 24767246
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Reversible control of enantioselectivity by the length of ketone substituent in biocatalytic reduction.
    Koesoema AA, Sugiyama Y, Sriwong KT, Xu Z, Verina S, Standley DM, Senda M, Senda T, Matsuda T.
    Appl Microbiol Biotechnol; 2019 Dec 25; 103(23-24):9529-9541. PubMed ID: 31720775
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.