These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
430 related items for PubMed ID: 20492228
1. Hydroxyl radical and ferryl-generating systems promote gel network formation of myofibrillar protein. Xiong YL, Blanchard SP, Ooizumi T, Ma Y. J Food Sci; 2010 Mar; 75(2):C215-21. PubMed ID: 20492228 [Abstract] [Full Text] [Related]
2. Protein oxidation at different salt concentrations affects the cross-linking and gelation of pork myofibrillar protein catalyzed by microbial transglutaminase. Li C, Xiong YL, Chen J. J Food Sci; 2013 Jun; 78(6):C823-31. PubMed ID: 23627930 [Abstract] [Full Text] [Related]
3. Variation in the cross-linking pattern of porcine myofibrillar protein exposed to three oxidative environments. Xiong YL, Park D, Ooizumi T. J Agric Food Chem; 2009 Jan 14; 57(1):153-9. PubMed ID: 19061417 [Abstract] [Full Text] [Related]
4. Oxidation-induced unfolding facilitates Myosin cross-linking in myofibrillar protein by microbial transglutaminase. Li C, Xiong YL, Chen J. J Agric Food Chem; 2012 Aug 15; 60(32):8020-7. PubMed ID: 22809283 [Abstract] [Full Text] [Related]
5. Curtailing Oxidation-Induced Loss of Myosin Gelling Potential by Pyrophosphate Through Shielding the S1 Subfragment. Liu Z, True AD, Xiong YL. J Food Sci; 2015 Jul 15; 80(7):C1468-75. PubMed ID: 25990830 [Abstract] [Full Text] [Related]
6. Biochemical changes in myofibrillar protein isolates exposed to three oxidizing systems. Park D, Xiong YL, Alderton AL, Ooizumi T. J Agric Food Chem; 2006 Jun 14; 54(12):4445-51. PubMed ID: 16756379 [Abstract] [Full Text] [Related]
7. Tyrosinase-aided protein cross-linking: effects on gel formation of chicken breast myofibrils and texture and water-holding of chicken breast meat homogenate gels. Lantto R, Puolanne E, Kruus K, Buchert J, Autio K. J Agric Food Chem; 2007 Feb 21; 55(4):1248-55. PubMed ID: 17243701 [Abstract] [Full Text] [Related]
8. Effects of iron-catalyzed and metmyoglobin oxidizing systems on biochemical properties of yak muscle myofibrillar protein. Wang H, Song Y, Liu Z, Li M, Zhang L, Yu Q, Guo Z, Wei J. Meat Sci; 2020 Aug 21; 166():108041. PubMed ID: 32330829 [Abstract] [Full Text] [Related]
9. Rheological Enhancement of Pork Myofibrillar Protein-Lipid Emulsion Composite Gels via Glucose Oxidase Oxidation/Transglutaminase Cross-Linking Pathway. Wang X, Xiong YL, Sato H. J Agric Food Chem; 2017 Sep 27; 65(38):8451-8458. PubMed ID: 28876922 [Abstract] [Full Text] [Related]
10. Controlled Cross-Linking with Glucose Oxidase for the Enhancement of Gelling Potential of Pork Myofibrillar Protein. Wang X, Xiong YL, Sato H, Kumazawa Y. J Agric Food Chem; 2016 Dec 21; 64(50):9523-9531. PubMed ID: 27936702 [Abstract] [Full Text] [Related]
11. Protective effect of porcine plasma protein hydrolysates on the gelation of porcine myofibrillar protein exposed to a hydroxyl radical-generating system. Niu H, Chen Y, Zhang H, Kong B, Liu Q. Int J Biol Macromol; 2018 Feb 21; 107(Pt A):654-661. PubMed ID: 28919527 [Abstract] [Full Text] [Related]
12. Xanthan enhances water binding and gel formation of transglutaminase-treated porcine myofibrillar proteins. Shang Y, Xiong YL. J Food Sci; 2010 Apr 21; 75(3):E178-85. PubMed ID: 20492292 [Abstract] [Full Text] [Related]
13. Effects of oxidative modification on gel properties of isolated porcine myofibrillar protein by peroxyl radicals. Zhou F, Zhao M, Zhao H, Sun W, Cui C. Meat Sci; 2014 Apr 21; 96(4):1432-9. PubMed ID: 24406430 [Abstract] [Full Text] [Related]
14. Comparison of gel properties and biochemical characteristics of myofibrillar protein from bighead carp (Aristichthys nobilis) affected by frozen storage and a hydroxyl radical-generation oxidizing system. Lu H, Zhang L, Li Q, Luo Y. Food Chem; 2017 May 15; 223():96-103. PubMed ID: 28069130 [Abstract] [Full Text] [Related]
15. The effectiveness of clove extracts in the inhibition of hydroxyl radical oxidation-induced structural and rheological changes in porcine myofibrillar protein. Chen H, Diao J, Li Y, Chen Q, Kong B. Meat Sci; 2016 Jan 15; 111():60-6. PubMed ID: 26340742 [Abstract] [Full Text] [Related]
16. Identification of restricting factors that inhibit swelling of oxidized myofibrils during brine irrigation. Liu Z, Xiong YL, Chen J. J Agric Food Chem; 2009 Nov 25; 57(22):10999-1007. PubMed ID: 19919128 [Abstract] [Full Text] [Related]
17. Disruption of secondary structure by oxidative stress alters the cross-linking pattern of myosin by microbial transglutaminase. Li C, Xiong YL. Meat Sci; 2015 Oct 25; 108():97-105. PubMed ID: 26068405 [Abstract] [Full Text] [Related]
18. Properties of transglutaminase-induced myofibrillar/wheat gluten gels. Ouyang Y, Xu J, Ji F, Tan M, Luo S, Zhong X, Zheng Z. J Food Sci; 2021 Jun 25; 86(6):2387-2397. PubMed ID: 34018189 [Abstract] [Full Text] [Related]
19. Gelation properties of myofibrillar protein under malondialdehyde-induced oxidative stress. Wang L, Zhang M, Fang Z, Bhandari B. J Sci Food Agric; 2017 Jan 25; 97(1):50-57. PubMed ID: 26916602 [Abstract] [Full Text] [Related]
20. Morphological examinations of oxidatively stressed pork muscle and myofibrils upon salt marination and cooking to elucidate the water-binding potential. Liu Z, Xiong YL, Chen J. J Agric Food Chem; 2011 Dec 28; 59(24):13026-34. PubMed ID: 22084832 [Abstract] [Full Text] [Related] Page: [Next] [New Search]