These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


246 related items for PubMed ID: 20497545

  • 1. Nutrient control of eukaryote cell growth: a systems biology study in yeast.
    Gutteridge A, Pir P, Castrillo JI, Charles PD, Lilley KS, Oliver SG.
    BMC Biol; 2010 May 24; 8():68. PubMed ID: 20497545
    [Abstract] [Full Text] [Related]

  • 2. Systems-biology dissection of eukaryotic cell growth.
    Przytycka TM, Andrews J.
    BMC Biol; 2010 May 24; 8():62. PubMed ID: 20529234
    [Abstract] [Full Text] [Related]

  • 3. Growth control of the eukaryote cell: a systems biology study in yeast.
    Castrillo JI, Zeef LA, Hoyle DC, Zhang N, Hayes A, Gardner DC, Cornell MJ, Petty J, Hakes L, Wardleworth L, Rash B, Brown M, Dunn WB, Broadhurst D, O'Donoghue K, Hester SS, Dunkley TP, Hart SR, Swainston N, Li P, Gaskell SJ, Paton NW, Lilley KS, Kell DB, Oliver SG.
    J Biol; 2007 May 24; 6(2):4. PubMed ID: 17439666
    [Abstract] [Full Text] [Related]

  • 4. The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur.
    Boer VM, de Winde JH, Pronk JT, Piper MD.
    J Biol Chem; 2003 Jan 31; 278(5):3265-74. PubMed ID: 12414795
    [Abstract] [Full Text] [Related]

  • 5. The genetic control of growth rate: a systems biology study in yeast.
    Pir P, Gutteridge A, Wu J, Rash B, Kell DB, Zhang N, Oliver SG.
    BMC Syst Biol; 2012 Jan 13; 6():4. PubMed ID: 22244311
    [Abstract] [Full Text] [Related]

  • 6. Short- and long-term dynamic responses of the metabolic network and gene expression in yeast to a transient change in the nutrient environment.
    Dikicioglu D, Dunn WB, Kell DB, Kirdar B, Oliver SG.
    Mol Biosyst; 2012 Jun 13; 8(6):1760-74. PubMed ID: 22491778
    [Abstract] [Full Text] [Related]

  • 7. Multilevel regulation of growth rate in yeast revealed using systems biology.
    Ramanathan A, Schreiber SL.
    J Biol; 2007 Jun 13; 6(2):3. PubMed ID: 17472733
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates.
    Liu Y, El Masoudi A, Pronk JT, van Gulik WM.
    Appl Environ Microbiol; 2019 Oct 15; 85(20):. PubMed ID: 31375494
    [Abstract] [Full Text] [Related]

  • 10. Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations.
    Boer VM, Crutchfield CA, Bradley PH, Botstein D, Rabinowitz JD.
    Mol Biol Cell; 2010 Jan 01; 21(1):198-211. PubMed ID: 19889834
    [Abstract] [Full Text] [Related]

  • 11. Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes.
    de Groot MJL, Daran-Lapujade P, van Breukelen B, Knijnenburg TA, de Hulster EAF, Reinders MJT, Pronk JT, Heck AJR, Slijper M.
    Microbiology (Reading); 2007 Nov 01; 153(Pt 11):3864-3878. PubMed ID: 17975095
    [Abstract] [Full Text] [Related]

  • 12. Glucose, nitrogen, and phosphate repletion in Saccharomyces cerevisiae: common transcriptional responses to different nutrient signals.
    Conway MK, Grunwald D, Heideman W.
    G3 (Bethesda); 2012 Sep 01; 2(9):1003-17. PubMed ID: 22973537
    [Abstract] [Full Text] [Related]

  • 13. Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: a three factor design.
    Fazio A, Jewett MC, Daran-Lapujade P, Mustacchi R, Usaite R, Pronk JT, Workman CT, Nielsen J.
    BMC Genomics; 2008 Jul 18; 9():341. PubMed ID: 18638364
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study.
    Daran-Lapujade P, Jansen ML, Daran JM, van Gulik W, de Winde JH, Pronk JT.
    J Biol Chem; 2004 Mar 05; 279(10):9125-38. PubMed ID: 14630934
    [Abstract] [Full Text] [Related]

  • 16. The last generation of bacterial growth in limiting nutrient.
    Bren A, Hart Y, Dekel E, Koster D, Alon U.
    BMC Syst Biol; 2013 Mar 25; 7():27. PubMed ID: 23531321
    [Abstract] [Full Text] [Related]

  • 17. Two-dimensional transcriptome analysis in chemostat cultures. Combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae.
    Tai SL, Boer VM, Daran-Lapujade P, Walsh MC, de Winde JH, Daran JM, Pronk JT.
    J Biol Chem; 2005 Jan 07; 280(1):437-47. PubMed ID: 15496405
    [Abstract] [Full Text] [Related]

  • 18. Adaptation of central metabolite pools to variations in growth rate and cultivation conditions in Saccharomyces cerevisiae.
    Kumar K, Venkatraman V, Bruheim P.
    Microb Cell Fact; 2021 Mar 09; 20(1):64. PubMed ID: 33750414
    [Abstract] [Full Text] [Related]

  • 19. Sense and sensibility: nutritional response and signal integration in yeast.
    Schneper L, Düvel K, Broach JR.
    Curr Opin Microbiol; 2004 Dec 09; 7(6):624-30. PubMed ID: 15556035
    [Abstract] [Full Text] [Related]

  • 20. Physiological and transcriptional responses of Saccharomyces cerevisiae to zinc limitation in chemostat cultures.
    De Nicola R, Hazelwood LA, De Hulster EA, Walsh MC, Knijnenburg TA, Reinders MJ, Walker GM, Pronk JT, Daran JM, Daran-Lapujade P.
    Appl Environ Microbiol; 2007 Dec 09; 73(23):7680-92. PubMed ID: 17933919
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.