These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


260 related items for PubMed ID: 20504042

  • 21. Regulation of branched-chain amino acid biosynthesis.
    Szentirmai A, Horváth I.
    Acta Microbiol Acad Sci Hung; 1976; 23(2):137-49. PubMed ID: 788468
    [Abstract] [Full Text] [Related]

  • 22. Mutagenesis of Escherichia coli acetohydroxyacid synthase isoenzyme II and characterization of three herbicide-insensitive forms.
    Hill CM, Duggleby RG.
    Biochem J; 1998 Nov 01; 335 ( Pt 3)(Pt 3):653-61. PubMed ID: 9794808
    [Abstract] [Full Text] [Related]

  • 23. Roles of three well-conserved arginine residues in mediating the catalytic activity of tobacco acetohydroxy acid synthase.
    Le DT, Yoon MY, Kim YT, Choi JD.
    J Biochem; 2005 Jul 01; 138(1):35-40. PubMed ID: 16046446
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Engineering substrate preference in subtilisin: structural and kinetic analysis of a specificity mutant.
    Ruan B, London V, Fisher KE, Gallagher DT, Bryan PN.
    Biochemistry; 2008 Jun 24; 47(25):6628-36. PubMed ID: 18507395
    [Abstract] [Full Text] [Related]

  • 26. Common ancestry of Escherichia coli pyruvate oxidase and the acetohydroxy acid synthases of the branched-chain amino acid biosynthetic pathway.
    Chang YY, Cronan JE.
    J Bacteriol; 1988 Sep 24; 170(9):3937-45. PubMed ID: 3045082
    [Abstract] [Full Text] [Related]

  • 27. A mechanism for valine-resistant growth of Escherichia coli K-12 supported by the valine-sensitive acetohydroxy acid synthase IV activity from ilvJ662.
    Jackson JH, Herring PA, Patterson EB, Blatt JM.
    Biochimie; 1993 Sep 24; 75(9):759-65. PubMed ID: 8274527
    [Abstract] [Full Text] [Related]

  • 28. Kinetic studies on drug-resistant variants of Escherichia coli thymidylate synthase: functional effects of amino acid substitutions at residue 4.
    Mahdavian E, Spencer HT, Dunlap RB.
    Arch Biochem Biophys; 1999 Aug 15; 368(2):257-64. PubMed ID: 10441376
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Role of a conserved arginine in the mechanism of acetohydroxyacid synthase: catalysis of condensation with a specific ketoacid substrate.
    Engel S, Vyazmensky M, Vinogradov M, Berkovich D, Bar-Ilan A, Qimron U, Rosiansky Y, Barak Z, Chipman DM.
    J Biol Chem; 2004 Jun 04; 279(23):24803-12. PubMed ID: 15044456
    [Abstract] [Full Text] [Related]

  • 31. Is a hydrophobic amino acid required to maintain the reactive V conformation of thiamin at the active center of thiamin diphosphate-requiring enzymes? Experimental and computational studies of isoleucine 415 of yeast pyruvate decarboxylase.
    Guo F, Zhang D, Kahyaoglu A, Farid RS, Jordan F.
    Biochemistry; 1998 Sep 22; 37(38):13379-91. PubMed ID: 9748345
    [Abstract] [Full Text] [Related]

  • 32. Homology modeling of the structure of tobacco acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis.
    Le DT, Yoon MY, Kim YT, Choi JD.
    Biochem Biophys Res Commun; 2004 May 07; 317(3):930-8. PubMed ID: 15081429
    [Abstract] [Full Text] [Related]

  • 33. Metabolic effects of inhibitors of two enzymes of the branched-chain amino acid pathway in Salmonella typhimurium.
    Epelbaum S, Chipman DM, Barak Z.
    J Bacteriol; 1996 Feb 07; 178(4):1187-96. PubMed ID: 8576056
    [Abstract] [Full Text] [Related]

  • 34. Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants.
    Chen H, Saksa K, Zhao F, Qiu J, Xiong L.
    Plant J; 2010 Aug 07; 63(4):573-83. PubMed ID: 20497381
    [Abstract] [Full Text] [Related]

  • 35. Computational study on the carboligation reaction of acetohidroxyacid synthase: new approach on the role of the HEThDP- intermediate.
    Jaña G, Jiménez V, Villà-Freixa J, Prat-Resina X, Delgado E, Alderete J.
    Proteins; 2010 May 15; 78(7):1774-88. PubMed ID: 20225259
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Key NAD+-binding residues in human 15-hydroxyprostaglandin dehydrogenase.
    Cho H, Hamza A, Zhan CG, Tai HH.
    Arch Biochem Biophys; 2005 Jan 15; 433(2):447-53. PubMed ID: 15581601
    [Abstract] [Full Text] [Related]

  • 38. Structural and functional evaluation of three well-conserved serine residues in tobacco acetohydroxyacid synthase.
    Yoon MY, Gedi V, Kim J, Park Y, Kim DE, Park EH, Choi JD.
    Biochimie; 2010 Jan 15; 92(1):65-70. PubMed ID: 19825392
    [Abstract] [Full Text] [Related]

  • 39. The 138th residue of acetohydroxyacid synthase in Corynebacterium glutamicum is important for the substrate binding specificity.
    Liu Y, Wang X, Zhan J, Hu J.
    Enzyme Microb Technol; 2019 Oct 15; 129():109357. PubMed ID: 31307581
    [Abstract] [Full Text] [Related]

  • 40. Subunit association in acetohydroxy acid synthase isozyme III.
    Sella C, Weinstock O, Barak Z, Chipman DM.
    J Bacteriol; 1993 Sep 15; 175(17):5339-43. PubMed ID: 8366022
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.