These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
154 related items for PubMed ID: 20507281
1. Regulation of renal sodium-dependent phosphate co-transporter genes (Npt2a and Npt2c) by all-trans-retinoic acid and its receptors. Masuda M, Yamamoto H, Kozai M, Tanaka S, Ishiguro M, Takei Y, Nakahashi O, Ikeda S, Uebanso T, Taketani Y, Segawa H, Miyamoto K, Takeda E. Biochem J; 2010 Aug 01; 429(3):583-92. PubMed ID: 20507281 [Abstract] [Full Text] [Related]
2. All-trans retinoic acid reduces the transcriptional regulation of intestinal sodium-dependent phosphate co-transporter gene (Npt2b). Masuda M, Yamamoto H, Takei Y, Nakahashi O, Adachi Y, Ohnishi K, Ohminami H, Yamanaka-Okumura H, Sakaue H, Miyazaki M, Takeda E, Taketani Y. Biochem J; 2020 Feb 28; 477(4):817-831. PubMed ID: 32016357 [Abstract] [Full Text] [Related]
4. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Segawa H, Onitsuka A, Furutani J, Kaneko I, Aranami F, Matsumoto N, Tomoe Y, Kuwahata M, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K. Am J Physiol Renal Physiol; 2009 Sep 28; 297(3):F671-8. PubMed ID: 19570882 [Abstract] [Full Text] [Related]
5. Thyroid hormones regulate phosphate homoeostasis through transcriptional control of the renal type IIa sodium-dependent phosphate co-transporter (Npt2a) gene. Ishiguro M, Yamamoto H, Masuda M, Kozai M, Takei Y, Tanaka S, Sato T, Segawa H, Taketani Y, Arai H, Miyamoto K, Takeda E. Biochem J; 2010 Mar 15; 427(1):161-9. PubMed ID: 20088828 [Abstract] [Full Text] [Related]
6. Downregulation of renal type IIa sodium-dependent phosphate cotransporter during lipopolysaccharide-induced acute inflammation. Ikeda S, Yamamoto H, Masuda M, Takei Y, Nakahashi O, Kozai M, Tanaka S, Nakao M, Taketani Y, Segawa H, Iwano M, Miyamoto K, Takeda E. Am J Physiol Renal Physiol; 2014 Apr 01; 306(7):F744-50. PubMed ID: 24500689 [Abstract] [Full Text] [Related]
7. Vitamin D and type II sodium-dependent phosphate cotransporters. Kido S, Kaneko I, Tatsumi S, Segawa H, Miyamoto K. Contrib Nephrol; 2013 Apr 01; 180():86-97. PubMed ID: 23652552 [Abstract] [Full Text] [Related]
8. Alternative promoters and renal cell-specific regulation of the mouse type IIa sodium-dependent phosphate cotransporter gene. Yamamoto H, Tani Y, Kobayashi K, Taketani Y, Sato T, Arai H, Morita K, Miyamoto K, Pike JW, Kato S, Takeda E. Biochim Biophys Acta; 2005 Dec 30; 1732(1-3):43-52. PubMed ID: 16380173 [Abstract] [Full Text] [Related]
9. Hypophosphatemia in vitamin D receptor null mice: effect of rescue diet on the developmental changes in renal Na+ -dependent phosphate cotransporters. Kaneko I, Segawa H, Furutani J, Kuwahara S, Aranami F, Hanabusa E, Tominaga R, Giral H, Caldas Y, Levi M, Kato S, Miyamoto K. Pflugers Arch; 2011 Jan 30; 461(1):77-90. PubMed ID: 21057807 [Abstract] [Full Text] [Related]
10. Phosphaturic action of fibroblast growth factor 23 in Npt2 null mice. Tomoe Y, Segawa H, Shiozawa K, Kaneko I, Tominaga R, Hanabusa E, Aranami F, Furutani J, Kuwahara S, Tatsumi S, Matsumoto M, Ito M, Miyamoto K. Am J Physiol Renal Physiol; 2010 Jun 30; 298(6):F1341-50. PubMed ID: 20357029 [Abstract] [Full Text] [Related]
11. Vitamin D3 suppresses Npt2c abundance and differentially modulates phosphate and calcium homeostasis in Npt2a knockout mice. Thomas L, Dissanayake LV, Tahmasbi M, Staruschenko A, Al-Masri S, Dominguez Rieg JA, Rieg T. Sci Rep; 2024 Jul 23; 14(1):16997. PubMed ID: 39043847 [Abstract] [Full Text] [Related]
12. Protein-DNA Interactions at the Opossum Npt2a Promoter are Dependent upon NHERF-1. Clark BJ, Murray RD, Salyer SA, Tyagi SC, Arumugam C, Khundmiri SJ, Lederer ED. Cell Physiol Biochem; 2016 Jul 23; 39(1):1-12. PubMed ID: 27322746 [Abstract] [Full Text] [Related]
13. PF-06869206 is a selective inhibitor of renal Pi transport: evidence from in vitro and in vivo studies. Thomas L, Xue J, Tomilin VN, Pochynyuk OM, Dominguez Rieg JA, Rieg T. Am J Physiol Renal Physiol; 2020 Sep 01; 319(3):F541-F551. PubMed ID: 32744087 [Abstract] [Full Text] [Related]
14. Activation of a non-cAMP/PKA signaling pathway downstream of the PTH/PTHrP receptor is essential for a sustained hypophosphatemic response to PTH infusion in male mice. Guo J, Song L, Liu M, Segawa H, Miyamoto K, Bringhurst FR, Kronenberg HM, Jüppner H. Endocrinology; 2013 May 01; 154(5):1680-9. PubMed ID: 23515284 [Abstract] [Full Text] [Related]
15. Regulation of type II renal Na+-dependent inorganic phosphate transporters by 1,25-dihydroxyvitamin D3. Identification of a vitamin D-responsive element in the human NAPi-3 gene. Taketani Y, Segawa H, Chikamori M, Morita K, Tanaka K, Kido S, Yamamoto H, Iemori Y, Tatsumi S, Tsugawa N, Okano T, Kobayashi T, Miyamoto K, Takeda E. J Biol Chem; 1998 Jun 05; 273(23):14575-81. PubMed ID: 9603973 [Abstract] [Full Text] [Related]
16. Role of the putative PKC phosphorylation sites of the type IIc sodium-dependent phosphate transporter in parathyroid hormone regulation. Fujii T, Segawa H, Hanazaki A, Nishiguchi S, Minoshima S, Ohi A, Tominaga R, Sasaki S, Tanifuji K, Koike M, Arima Y, Shiozaki Y, Kaneko I, Ito M, Tatsumi S, Miyamoto KI. Clin Exp Nephrol; 2019 Jul 05; 23(7):898-907. PubMed ID: 30895530 [Abstract] [Full Text] [Related]
17. Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c. Tenenhouse HS, Martel J, Gauthier C, Segawa H, Miyamoto K. Am J Physiol Renal Physiol; 2003 Dec 05; 285(6):F1271-8. PubMed ID: 12952859 [Abstract] [Full Text] [Related]
18. Analysis of opossum kidney NaPi-IIc sodium-dependent phosphate transporter to understand Pi handling in human kidney. Fujii T, Shiozaki Y, Segawa H, Nishiguchi S, Hanazaki A, Noguchi M, Kirino R, Sasaki S, Tanifuji K, Koike M, Yokoyama M, Arima Y, Kaneko I, Tatsumi S, Ito M, Miyamoto KI. Clin Exp Nephrol; 2019 Mar 05; 23(3):313-324. PubMed ID: 30317447 [Abstract] [Full Text] [Related]
19. Response of Npt2a knockout mice to dietary calcium and phosphorus. Li Y, Caballero D, Ponsetto J, Chen A, Zhu C, Guo J, Demay M, Jüppner H, Bergwitz C. PLoS One; 2017 Mar 05; 12(4):e0176232. PubMed ID: 28448530 [Abstract] [Full Text] [Related]
20. 9-cis-Retinoic acid represses transcription of the gonadotropin-releasing hormone (GnRH) gene via proximal promoter region that is distinct from all-trans-retinoic acid response element. Cho S, Chung J, Han J, Ju Lee B, Han Kim D, Rhee K, Kim K. Brain Res Mol Brain Res; 2001 Mar 05; 87(2):214-22. PubMed ID: 11245924 [Abstract] [Full Text] [Related] Page: [Next] [New Search]