These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
512 related items for PubMed ID: 20509642
1. Wettability control and water droplet dynamics on SiC-SiO2 core-shell nanowires. Kwak G, Lee M, Senthil K, Yong K. Langmuir; 2010 Jul 20; 26(14):12273-7. PubMed ID: 20509642 [Abstract] [Full Text] [Related]
2. Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires. Seo J, Lee S, Lee J, Lee T. ACS Appl Mater Interfaces; 2011 Dec 20; 3(12):4722-9. PubMed ID: 22091585 [Abstract] [Full Text] [Related]
3. Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces. Dawood MK, Zheng H, Liew TH, Leong KC, Foo YL, Rajagopalan R, Khan SA, Choi WK. Langmuir; 2011 Apr 05; 27(7):4126-33. PubMed ID: 21355585 [Abstract] [Full Text] [Related]
4. A combined etching process toward robust superhydrophobic SiC surfaces. Liu Y, Lin W, Lin Z, Xiu Y, Wong CP. Nanotechnology; 2012 Jun 29; 23(25):255703. PubMed ID: 22652604 [Abstract] [Full Text] [Related]
5. Reversible electrowetting on superhydrophobic double-nanotextured surfaces. Lapierre F, Thomy V, Coffinier Y, Blossey R, Boukherroub R. Langmuir; 2009 Jun 02; 25(11):6551-8. PubMed ID: 19402607 [Abstract] [Full Text] [Related]
6. Selective adhesion of Bacillus cereus spores on heterogeneously wetted silicon nanowires. Galopin E, Piret G, Szunerits S, Lequette Y, Faille C, Boukherroub R. Langmuir; 2010 Mar 02; 26(5):3479-84. PubMed ID: 19891454 [Abstract] [Full Text] [Related]
8. Control of superhydrophilicity/superhydrophobicity using silicon nanowires via electroless etching method and fluorine carbon coatings. Kim BS, Shin S, Shin SJ, Kim KM, Cho HH. Langmuir; 2011 Aug 16; 27(16):10148-56. PubMed ID: 21728376 [Abstract] [Full Text] [Related]
9. Resistance switching in a SiC nanowire/Au nanoparticle network. Mori Y, Kohno H. Nanotechnology; 2009 Jul 15; 20(28):285705. PubMed ID: 19550009 [Abstract] [Full Text] [Related]
12. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment. Synytska A, Ionov L, Grundke K, Stamm M. Langmuir; 2009 Mar 03; 25(5):3132-6. PubMed ID: 19437778 [Abstract] [Full Text] [Related]
13. Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates. Zhang Qb, Xu D, Hung TF, Zhang K. Nanotechnology; 2013 Feb 15; 24(6):065602. PubMed ID: 23340193 [Abstract] [Full Text] [Related]
15. Wetting behavior of low-index cubic SiC surfaces. Catellani A, Cicero G, Galli G. J Chem Phys; 2006 Jan 14; 124(2):024707. PubMed ID: 16422626 [Abstract] [Full Text] [Related]
16. Biomolecule and nanoparticle transfer on patterned and heterogeneously wetted superhydrophobic silicon nanowire surfaces. Piret G, Coffinier Y, Roux C, Melnyk O, Boukherroub R. Langmuir; 2008 Mar 04; 24(5):1670-2. PubMed ID: 18251564 [Abstract] [Full Text] [Related]
18. Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (≤100 nm). Karunakaran RG, Lu CH, Zhang Z, Yang S. Langmuir; 2011 Apr 19; 27(8):4594-602. PubMed ID: 21355577 [Abstract] [Full Text] [Related]
19. Superhydrophobicity of electrospray-synthesized fluorinated silica layers. Kim EK, Lee CS, Kim SS. J Colloid Interface Sci; 2012 Feb 15; 368(1):599-602. PubMed ID: 22176784 [Abstract] [Full Text] [Related]
20. Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low Weber and Reynolds numbers. Son Y, Kim C, Yang DH, Ahn DJ. Langmuir; 2008 Mar 18; 24(6):2900-7. PubMed ID: 18260678 [Abstract] [Full Text] [Related] Page: [Next] [New Search]