These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


296 related items for PubMed ID: 20510854

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Downregulation of cortical inhibition mediates ocular dominance plasticity during the critical period.
    Ma WP, Li YT, Tao HW.
    J Neurosci; 2013 Jul 03; 33(27):11276-80. PubMed ID: 23825430
    [Abstract] [Full Text] [Related]

  • 4. Stimulus for rapid ocular dominance plasticity in visual cortex.
    Rittenhouse CD, Siegler BA, Voelker CC, Shouval HZ, Paradiso MA, Bear MF.
    J Neurophysiol; 2006 May 03; 95(5):2947-50. PubMed ID: 16481452
    [Abstract] [Full Text] [Related]

  • 5. How monocular deprivation shifts ocular dominance in visual cortex of young mice.
    Frenkel MY, Bear MF.
    Neuron; 2004 Dec 16; 44(6):917-23. PubMed ID: 15603735
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Shan L, Yong H, Song Q, Wei Y, Qin R, Zhang G, Xu M, Zhang S.
    Exp Eye Res; 2013 Apr 16; 109():17-21. PubMed ID: 23370270
    [Abstract] [Full Text] [Related]

  • 8. Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice.
    Lickey ME, Pham TA, Gordon B.
    Vision Res; 2004 Dec 16; 44(28):3381-7. PubMed ID: 15536006
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Preserved excitatory-inhibitory balance of cortical synaptic inputs following deprived eye stimulation after a saturating period of monocular deprivation in rats.
    Iurilli G, Olcese U, Medini P.
    PLoS One; 2013 Dec 16; 8(12):e82044. PubMed ID: 24349181
    [Abstract] [Full Text] [Related]

  • 17. Blockade of GluN2B-Containing NMDA Receptors Prevents Potentiation and Depression of Responses during Ocular Dominance Plasticity.
    Bridi MCD, Hong S, Severin D, Moreno C, Contreras A, Kirkwood A.
    J Neurosci; 2024 Sep 04; 44(36):. PubMed ID: 39117456
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y, Inaba M, Yamada K, Kurotani T, Begum T, Reza F, Maruyama T, Komatsu Y.
    Eur J Neurosci; 2008 Aug 04; 28(4):730-43. PubMed ID: 18657180
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.