These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
695 related items for PubMed ID: 20510984
1. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees. Mâaref K, Martinet N, Grumillier C, Ghannouchi S, André JM, Paysant J. Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984 [Abstract] [Full Text] [Related]
2. Uphill and downhill walking in unilateral lower limb amputees. Vrieling AH, van Keeken HG, Schoppen T, Otten E, Halbertsma JP, Hof AL, Postema K. Gait Posture; 2008 Aug; 28(2):235-42. PubMed ID: 18242995 [Abstract] [Full Text] [Related]
3. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees. Kaufman KR, Levine JA, Brey RH, Iverson BK, McCrady SK, Padgett DJ, Joyner MJ. Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114 [Abstract] [Full Text] [Related]
4. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee. Hafner BJ, Willingham LL, Buell NC, Allyn KJ, Smith DG. Arch Phys Med Rehabil; 2007 Feb; 88(2):207-17. PubMed ID: 17270519 [Abstract] [Full Text] [Related]
5. [Biomechanics and evaluation of the microprocessor-controlled C-Leg exoprosthesis knee joint]. Stinus H. Z Orthop Ihre Grenzgeb; 2000 Feb; 138(3):278-82. PubMed ID: 10929622 [Abstract] [Full Text] [Related]
6. Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees. Beyaert C, Grumillier C, Martinet N, Paysant J, André JM. Gait Posture; 2008 Aug; 28(2):278-84. PubMed ID: 18295487 [Abstract] [Full Text] [Related]
7. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking. Creylman V, Knippels I, Janssen P, Biesbrouck E, Lechler K, Peeraer L. Biomed Eng Online; 2016 Dec 19; 15(Suppl 3):142. PubMed ID: 28105945 [Abstract] [Full Text] [Related]
8. Re: Gait and balance of transfemoral amputees using passive mechanical and microprocessor controlled prosthetic knees by Kaufman et al. [Gait and Posture 20 (2007) 489-493]. Dillon M, Bach T. Gait Posture; 2009 Jan 19; 29(1):161-2; author reply 163-4. PubMed ID: 18722125 [No Abstract] [Full Text] [Related]
9. Preliminary evaluation of an automatically stance-phase controlled pediatric prosthetic knee joint using quantitative gait analysis. Andrysek J, Redekop S, Naumann S. Arch Phys Med Rehabil; 2007 Apr 19; 88(4):464-70. PubMed ID: 17398247 [Abstract] [Full Text] [Related]
10. Gait initiation in lower limb amputees. Vrieling AH, van Keeken HG, Schoppen T, Otten E, Halbertsma JP, Hof AL, Postema K. Gait Posture; 2008 Apr 19; 27(3):423-30. PubMed ID: 17624782 [Abstract] [Full Text] [Related]
11. A comparative study of conventional and energy-storing prosthetic feet in high-functioning transfemoral amputees. Graham LE, Datta D, Heller B, Howitt J, Pros D. Arch Phys Med Rehabil; 2007 Jun 19; 88(6):801-6. PubMed ID: 17532907 [Abstract] [Full Text] [Related]
12. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees. Burnfield JM, Eberly VJ, Gronely JK, Perry J, Yule WJ, Mulroy SJ. Prosthet Orthot Int; 2012 Mar 19; 36(1):95-104. PubMed ID: 22223685 [Abstract] [Full Text] [Related]
13. Three-dimensional motions of trunk and pelvis during transfemoral amputee gait. Goujon-Pillet H, Sapin E, Fodé P, Lavaste F. Arch Phys Med Rehabil; 2008 Jan 19; 89(1):87-94. PubMed ID: 18164336 [Abstract] [Full Text] [Related]
14. Compensatory mechanism involving the hip joint of the intact limb during gait in unilateral trans-tibial amputees. Grumillier C, Martinet N, Paysant J, André JM, Beyaert C. J Biomech; 2008 Oct 20; 41(14):2926-31. PubMed ID: 18771768 [Abstract] [Full Text] [Related]
15. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation. Eberly VJ, Mulroy SJ, Gronley JK, Perry J, Yule WJ, Burnfield JM. Prosthet Orthot Int; 2014 Dec 20; 38(6):447-55. PubMed ID: 24135259 [Abstract] [Full Text] [Related]
16. Immediate effects of a new microprocessor-controlled prosthetic knee joint: a comparative biomechanical evaluation. Bellmann M, Schmalz T, Ludwigs E, Blumentritt S. Arch Phys Med Rehabil; 2012 Mar 20; 93(3):541-9. PubMed ID: 22373937 [Abstract] [Full Text] [Related]
17. Does a microprocessor-controlled prosthetic knee affect stair ascent strategies in persons with transfemoral amputation? Aldridge Whitehead JM, Wolf EJ, Scoville CR, Wilken JM. Clin Orthop Relat Res; 2014 Oct 20; 472(10):3093-101. PubMed ID: 24515402 [Abstract] [Full Text] [Related]
18. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial. Cao W, Yu H, Zhao W, Meng Q, Chen W. Technol Health Care; 2018 Oct 20; 26(4):581-592. PubMed ID: 29710741 [Abstract] [Full Text] [Related]
19. Functional gait analysis of trans-femoral amputees using two different single-axis prosthetic knees with hydraulic swing-phase control: Kinematic and kinetic comparison of two prosthetic knees. Sapin E, Goujon H, de Almeida F, Fodé P, Lavaste F. Prosthet Orthot Int; 2008 Jun 20; 32(2):201-18. PubMed ID: 18569888 [Abstract] [Full Text] [Related]
20. The mechanics of landing when stepping down in unilateral lower-limb amputees. Jones SF, Twigg PC, Scally AJ, Buckley JG. Clin Biomech (Bristol); 2006 Feb 20; 21(2):184-93. PubMed ID: 16274904 [Abstract] [Full Text] [Related] Page: [Next] [New Search]