These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. Complete reductive dechlorination of tetrachloroethene to ethene by anaerobic microbial enrichment culture developed from sediment. Kim BH, Baek KH, Cho DH, Sung Y, Koh SC, Ahn CY, Oh HM, Kim HS. Biotechnol Lett; 2010 Dec; 32(12):1829-35. PubMed ID: 20714784 [Abstract] [Full Text] [Related]
46. Microbial reductive dechlorination of pre-existing PCBs and spiked 2,3,4,5,6-pentachlorobiphenyl in anaerobic slurries of a contaminated sediment of Venice Lagoon (Italy). Fava F, Zanaroli G, Young LY. FEMS Microbiol Ecol; 2003 Jun 01; 44(3):309-18. PubMed ID: 19719612 [Abstract] [Full Text] [Related]
48. Evidence for widespread dechlorination of polychlorinated biphenyls in groundwater, landfills, and wastewater collection systems. Rodenburg LA, Du S, Fennell DE, Cavallo GJ. Environ Sci Technol; 2010 Oct 01; 44(19):7534-40. PubMed ID: 20828204 [Abstract] [Full Text] [Related]
50. Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Wilms R, Köpke B, Sass H, Chang TS, Cypionka H, Engelen B. Environ Microbiol; 2006 Apr 01; 8(4):709-19. PubMed ID: 16584482 [Abstract] [Full Text] [Related]
51. Invariant chlorine isotopic signatures during microbial PCB reductive dechlorination. Drenzek NJ, Eglinton TI, Wirsen CO, Sturchio NC, Heraty LJ, Sowers KR, Wu Q, May HD, Reddy CM. Environ Pollut; 2004 Apr 01; 128(3):445-8. PubMed ID: 14720486 [Abstract] [Full Text] [Related]
52. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Webster G, Watt LC, Rinna J, Fry JC, Evershed RP, Parkes RJ, Weightman AJ. Environ Microbiol; 2006 Sep 01; 8(9):1575-89. PubMed ID: 16913918 [Abstract] [Full Text] [Related]
53. Effect of biostimulation on the microbial community in PCB-contaminated sediments through periodic amendment of sediment with iron. Srinivasa Varadhan A, Khodadoust AP, Brenner RC. J Ind Microbiol Biotechnol; 2011 Oct 01; 38(10):1691-707. PubMed ID: 21528414 [Abstract] [Full Text] [Related]
54. Diversity of chlorobiphenyl-metabolizing bacteria and their biphenyl dioxygenases in contaminated sediment. Koubek J, Mackova M, Macek T, Uhlik O. Chemosphere; 2013 Nov 01; 93(8):1548-55. PubMed ID: 24007621 [Abstract] [Full Text] [Related]
56. In situ treatment of PCBs by anaerobic microbial dechlorination in aquatic sediment: are we there yet? Sowers KR, May HD. Curr Opin Biotechnol; 2013 Jun 01; 24(3):482-8. PubMed ID: 23102490 [Abstract] [Full Text] [Related]
57. Changes in enantiomeric fractions during microbial reductive dechlorination of PCB132, PCB149, and araclor 1254 in Lake Hartwell sediment microcosms. Pakdeesusuk U, Jones WJ, Lee CM, Garrison AW, O'Niell WL, Freedman DL, Coates JT, Wong CS. Environ Sci Technol; 2003 Mar 15; 37(6):1100-7. PubMed ID: 12680661 [Abstract] [Full Text] [Related]
59. Exposure effect of fungicide kasugamycin on bacterial community in natural river sediment. Huang CY, Ho CH, Lin CJ, Lo CC. J Environ Sci Health B; 2010 Jul 15; 45(5):485-91. PubMed ID: 20512740 [Abstract] [Full Text] [Related]