These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


465 related items for PubMed ID: 20513517

  • 21. Do early-life viral infections cause asthma?
    Sly PD, Kusel M, Holt PG.
    J Allergy Clin Immunol; 2010 Jun; 125(6):1202-5. PubMed ID: 20304476
    [Abstract] [Full Text] [Related]

  • 22. The role of respiratory viruses in asthma.
    Busse WW, Gern JE, Dick EC.
    Ciba Found Symp; 1997 Jun; 206():208-13; discussion 213-9. PubMed ID: 9257014
    [Abstract] [Full Text] [Related]

  • 23. Comparison of rhinovirus antibody titers in children with asthma exacerbations and species-specific rhinovirus infection.
    Iwasaki J, Smith WA, Khoo SK, Bizzintino J, Zhang G, Cox DW, Laing IA, Le Souëf PN, Thomas WR, Hales BJ.
    J Allergy Clin Immunol; 2014 Jul; 134(1):25-32. PubMed ID: 24767874
    [Abstract] [Full Text] [Related]

  • 24. Viruses in asthma exacerbations.
    Tan WC.
    Curr Opin Pulm Med; 2005 Jan; 11(1):21-6. PubMed ID: 15591884
    [Abstract] [Full Text] [Related]

  • 25. Response to infections in patients with asthma and atopic disease: an epiphenomenon or reflection of host susceptibility?
    James KM, Peebles RS, Hartert TV.
    J Allergy Clin Immunol; 2012 Aug; 130(2):343-51. PubMed ID: 22846746
    [Abstract] [Full Text] [Related]

  • 26. Th2-type cytokine-induced mucus metaplasia decreases susceptibility of human bronchial epithelium to rhinovirus infection.
    Jakiela B, Gielicz A, Plutecka H, Hubalewska-Mazgaj M, Mastalerz L, Bochenek G, Soja J, Januszek R, Aab A, Musial J, Akdis M, Akdis CA, Sanak M.
    Am J Respir Cell Mol Biol; 2014 Aug; 51(2):229-41. PubMed ID: 24588727
    [Abstract] [Full Text] [Related]

  • 27. The role of rhinovirus in asthma exacerbations.
    Friedlander SL, Busse WW.
    J Allergy Clin Immunol; 2005 Aug; 116(2):267-73. PubMed ID: 16083778
    [Abstract] [Full Text] [Related]

  • 28. Regulation and Function of Interferon-Lambda (IFNλ) and Its Receptor in Asthma.
    Krammer S, Sicorschi Gutu C, Grund JC, Chiriac MT, Zirlik S, Finotto S.
    Front Immunol; 2021 Aug; 12():731807. PubMed ID: 34899691
    [Abstract] [Full Text] [Related]

  • 29. Respiratory viral infection, epithelial cytokines, and innate lymphoid cells in asthma exacerbations.
    Kumar RK, Foster PS, Rosenberg HF.
    J Leukoc Biol; 2014 Sep; 96(3):391-6. PubMed ID: 24904000
    [Abstract] [Full Text] [Related]

  • 30. Bronchial mucosal IFN-α/β and pattern recognition receptor expression in patients with experimental rhinovirus-induced asthma exacerbations.
    Zhu J, Message SD, Mallia P, Kebadze T, Contoli M, Ward CK, Barnathan ES, Mascelli MA, Kon OM, Papi A, Stanciu LA, Edwards MR, Jeffery PK, Johnston SL.
    J Allergy Clin Immunol; 2019 Jan; 143(1):114-125.e4. PubMed ID: 29698627
    [Abstract] [Full Text] [Related]

  • 31. Plasmacytoid dendritic cells drive acute asthma exacerbations.
    Chairakaki AD, Saridaki MI, Pyrillou K, Mouratis MA, Koltsida O, Walton RP, Bartlett NW, Stavropoulos A, Boon L, Rovina N, Papadopoulos NG, Johnston SL, Andreakos E.
    J Allergy Clin Immunol; 2018 Aug; 142(2):542-556.e12. PubMed ID: 29054692
    [Abstract] [Full Text] [Related]

  • 32. Exogenous IFN-β has antiviral and anti-inflammatory properties in primary bronchial epithelial cells from asthmatic subjects exposed to rhinovirus.
    Cakebread JA, Xu Y, Grainge C, Kehagia V, Howarth PH, Holgate ST, Davies DE.
    J Allergy Clin Immunol; 2011 May; 127(5):1148-54.e9. PubMed ID: 21329968
    [Abstract] [Full Text] [Related]

  • 33. Impact of Rhinovirus Infections in Children.
    Vandini S, Biagi C, Fischer M, Lanari M.
    Viruses; 2019 Jun 05; 11(6):. PubMed ID: 31195744
    [Abstract] [Full Text] [Related]

  • 34. Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma.
    Bochkov YA, Hanson KM, Keles S, Brockman-Schneider RA, Jarjour NN, Gern JE.
    Mucosal Immunol; 2010 Jan 05; 3(1):69-80. PubMed ID: 19710636
    [Abstract] [Full Text] [Related]

  • 35. Epithelial cells and airway diseases.
    Proud D, Leigh R.
    Immunol Rev; 2011 Jul 05; 242(1):186-204. PubMed ID: 21682746
    [Abstract] [Full Text] [Related]

  • 36. [Acute respiratory viral infections and bronchial asthma. Cellular and molecular aspects of the problem].
    Khaitov MR.
    Zh Mikrobiol Epidemiol Immunobiol; 2002 Jul 05; (4):84-93. PubMed ID: 12449707
    [Abstract] [Full Text] [Related]

  • 37. Asthma, viruses, and nitric oxide.
    Sanders SP.
    Proc Soc Exp Biol Med; 1999 Mar 05; 220(3):123-32. PubMed ID: 10193439
    [Abstract] [Full Text] [Related]

  • 38. Allergenic proteases cleave the chemokine CX3CL1 directly from the surface of airway epithelium and augment the effect of rhinovirus.
    Loxham M, Smart DE, Bedke NJ, Smithers NP, Filippi I, Blume C, Swindle EJ, Tariq K, Howarth PH, Holgate ST, Davies DE.
    Mucosal Immunol; 2018 Mar 05; 11(2):404-414. PubMed ID: 28677664
    [Abstract] [Full Text] [Related]

  • 39. Genetics and epidemiology: asthma and infection.
    Bartlett NW, McLean GR, Chang YS, Johnston SL.
    Curr Opin Allergy Clin Immunol; 2009 Oct 05; 9(5):395-400. PubMed ID: 19644362
    [Abstract] [Full Text] [Related]

  • 40. The influence of asthma control on the severity of virus-induced asthma exacerbations.
    Jackson DJ, Trujillo-Torralbo MB, del-Rosario J, Bartlett NW, Edwards MR, Mallia P, Walton RP, Johnston SL.
    J Allergy Clin Immunol; 2015 Aug 05; 136(2):497-500.e3. PubMed ID: 25772596
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 24.