These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 20517558

  • 1. Detection of bacterial cells by impedance spectra via fluidic electrodes in a microfluidic device.
    Zhu T, Pei Z, Huang J, Xiong C, Shi S, Fang J.
    Lab Chip; 2010 Jun 21; 10(12):1557-60. PubMed ID: 20517558
    [Abstract] [Full Text] [Related]

  • 2. Electrical detection of germination of viable model Bacillus anthracis spores in microfluidic biochips.
    Liu YS, Walter TM, Chang WJ, Lim KS, Yang L, Lee SW, Aronson A, Bashir R.
    Lab Chip; 2007 May 21; 7(5):603-10. PubMed ID: 17476379
    [Abstract] [Full Text] [Related]

  • 3. Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes.
    Yang L.
    Talanta; 2008 Feb 15; 74(5):1621-9. PubMed ID: 18371827
    [Abstract] [Full Text] [Related]

  • 4. Counting bacteria on a microfluidic chip.
    Song Y, Zhang H, Chon CH, Chen S, Pan X, Li D.
    Anal Chim Acta; 2010 Nov 29; 681(1-2):82-6. PubMed ID: 21035606
    [Abstract] [Full Text] [Related]

  • 5. Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria.
    Bernabini C, Holmes D, Morgan H.
    Lab Chip; 2011 Feb 07; 11(3):407-12. PubMed ID: 21060945
    [Abstract] [Full Text] [Related]

  • 6. Effect of diffusion on impedance measurements in a hydrodynamic flow focusing sensor.
    Nasir M, Price DT, Shriver-Lake LC, Ligler F.
    Lab Chip; 2010 Oct 21; 10(20):2787-95. PubMed ID: 20725680
    [Abstract] [Full Text] [Related]

  • 7. Combined dielectrophoretic and impedance system for on-chip controlled bacteria concentration: Application to Escherichia coli.
    Del Moral-Zamora B, Punter-Villagrassa J, Oliva-Brañas AM, Álvarez-Azpeitia JM, Colomer-Farrarons J, Samitier J, Homs-Corbera A, Miribel-Català PL.
    Electrophoresis; 2015 May 21; 36(9-10):1130-41. PubMed ID: 25752513
    [Abstract] [Full Text] [Related]

  • 8. Red blood cell quantification microfluidic chip using polyelectrolytic gel electrodes.
    Kim KB, Chun H, Kim HC, Chung TD.
    Electrophoresis; 2009 May 21; 30(9):1464-9. PubMed ID: 19340832
    [Abstract] [Full Text] [Related]

  • 9. On-chip determination of spermatozoa concentration using electrical impedance measurements.
    Segerink LI, Sprenkels AJ, ter Braak PM, Vermes I, van den Berg A.
    Lab Chip; 2010 Apr 21; 10(8):1018-24. PubMed ID: 20358109
    [Abstract] [Full Text] [Related]

  • 10. Sample concentration and impedance detection on a microfluidic polymer chip.
    Sabounchi P, Morales AM, Ponce P, Lee LP, Simmons BA, Davalos RV.
    Biomed Microdevices; 2008 Oct 21; 10(5):661-70. PubMed ID: 18484178
    [Abstract] [Full Text] [Related]

  • 11. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC, Yen PW, Peng CC, Tung YC.
    Lab Chip; 2012 Sep 07; 12(17):3135-41. PubMed ID: 22763751
    [Abstract] [Full Text] [Related]

  • 12. Quantification of bacterial cells based on autofluorescence on a microfluidic platform.
    Bao N, Jagadeesan B, Bhunia AK, Yao Y, Lu C.
    J Chromatogr A; 2008 Feb 15; 1181(1-2):153-8. PubMed ID: 18187141
    [Abstract] [Full Text] [Related]

  • 13. Application of a microfluidic device for counting of bacteria.
    Inatomi KI, Izuo SI, Lee SS.
    Lett Appl Microbiol; 2006 Sep 15; 43(3):296-300. PubMed ID: 16910935
    [Abstract] [Full Text] [Related]

  • 14. Bacteria capture, concentration and detection by alternating current dielectrophoresis and self-assembly of dispersed single-wall carbon nanotubes.
    Zhou R, Wang P, Chang HC.
    Electrophoresis; 2006 Apr 15; 27(7):1376-85. PubMed ID: 16568404
    [Abstract] [Full Text] [Related]

  • 15. Hydrodynamic and electrical considerations in the design of a four-electrode impedance-based microfluidic device.
    Justin G, Nasir M, Ligler FS.
    Anal Bioanal Chem; 2011 May 15; 400(5):1347-58. PubMed ID: 21448604
    [Abstract] [Full Text] [Related]

  • 16. Electric cell-substrate impedance sensing with screen printed electrode structures.
    Brischwein M, Herrmann S, Vonau W, Berthold F, Grothe H, Motrescu ER, Wolf B.
    Lab Chip; 2006 Jun 15; 6(6):819-22. PubMed ID: 16738736
    [Abstract] [Full Text] [Related]

  • 17. Label-free detection of DNA with interdigitated micro-electrodes in a fluidic cell.
    Berdat D, Martin Rodríguez AC, Herrera F, Gijs MA.
    Lab Chip; 2008 Feb 15; 8(2):302-8. PubMed ID: 18231670
    [Abstract] [Full Text] [Related]

  • 18. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array.
    Shadpour H, Hupert ML, Patterson D, Liu C, Galloway M, Stryjewski W, Goettert J, Soper SA.
    Anal Chem; 2007 Feb 01; 79(3):870-8. PubMed ID: 17263312
    [Abstract] [Full Text] [Related]

  • 19. On-chip micro-biosensor for the detection of human CD4(+) cells based on AC impedance and optical analysis.
    Mishra NN, Retterer S, Zieziulewicz TJ, Isaacson M, Szarowski D, Mousseau DE, Lawrence DA, Turner JN.
    Biosens Bioelectron; 2005 Nov 15; 21(5):696-704. PubMed ID: 16242607
    [Abstract] [Full Text] [Related]

  • 20. A parallel diffusion-based microfluidic device for bacterial chemotaxis analysis.
    Si G, Yang W, Bi S, Luo C, Ouyang Q.
    Lab Chip; 2012 Apr 07; 12(7):1389-94. PubMed ID: 22361931
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.