These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
91 related items for PubMed ID: 20518500
1. Phosphorylation and coordination bond of mineral inhibit the hydrolysis of the beta-casein (1-25) peptide by intestinal brush-border membrane enzymes. Boutrou R, Coirre E, Jardin J, Léonil J. J Agric Food Chem; 2010 Jul 14; 58(13):7955-61. PubMed ID: 20518500 [Abstract] [Full Text] [Related]
2. Glycosylations of kappa-casein-derived caseinomacropeptide reduce its accessibility to endo- but not exointestinal brush border membrane peptidases. Boutrou R, Jardin J, Blais A, Tomé D, Léonil J. J Agric Food Chem; 2008 Sep 10; 56(17):8166-73. PubMed ID: 18698795 [Abstract] [Full Text] [Related]
3. Improved absorption of caseinophosphopeptide-bound iron: role of alkaline phosphatase. Ani-Kibangou B, Bouhallab S, Mollé D, Henry G, Bureau F, Neuville D, Arhan P, Bouglé D. J Nutr Biochem; 2005 Jul 10; 16(7):398-401. PubMed ID: 15992677 [Abstract] [Full Text] [Related]
8. Milk proteins and iron absorption: contrasting effects of different caseinophosphopeptides. Kibangou IB, Bouhallab S, Henry G, Bureau F, Allouche S, Blais A, Guérin P, Arhan P, Bouglé DL. Pediatr Res; 2005 Oct 10; 58(4):731-4. PubMed ID: 16189201 [Abstract] [Full Text] [Related]
9. The (193-209) 17-residues peptide of bovine β-casein is transported through Caco-2 monolayer. Regazzo D, Mollé D, Gabai G, Tomé D, Dupont D, Leonil J, Boutrou R. Mol Nutr Food Res; 2010 Oct 10; 54(10):1428-35. PubMed ID: 20397193 [Abstract] [Full Text] [Related]
10. Transport across Caco-2 cell monolayer and sensitivity to hydrolysis of two anxiolytic peptides from αs1-casein, α-casozepine, and αs1-casein-f91-97: effect of bile salts. Cakir-Kiefer C, Miclo L, Balandras F, Dary A, Soligot C, Le Roux Y. J Agric Food Chem; 2011 Nov 23; 59(22):11956-65. PubMed ID: 21981611 [Abstract] [Full Text] [Related]
12. The responses of rat intestinal brush border and cytosol peptide hydrolase activities to variation in dietary protein content: dietary regulation of intestinal peptide hydrolases. Nicholson JA, McCarthy DM, Kim YS. J Clin Invest; 1974 Oct 23; 54(4):890-8. PubMed ID: 4430719 [Abstract] [Full Text] [Related]
17. Stimulation of proteolytic digestion by intestinal goblet cell mucus. Shora W, Forstner GG, Forstner JF. Gastroenterology; 1975 Mar 23; 68(3):470-9. PubMed ID: 1112451 [Abstract] [Full Text] [Related]
18. Release of short and proline-rich antihypertensive peptides from casein hydrolysate with an Aspergillus oryzae protease. Mizuno S, Nishimura S, Matsuura K, Gotou T, Yamamoto N. J Dairy Sci; 2004 Oct 23; 87(10):3183-8. PubMed ID: 15377596 [Abstract] [Full Text] [Related]
19. [The topography of the intestinal enzymes in rhesus macaques]. Gordova LA. Zh Evol Biokhim Fiziol; 1996 Oct 23; 32(5):658-61. PubMed ID: 9092244 [Abstract] [Full Text] [Related]
20. Peptides surviving the simulated gastrointestinal digestion of milk proteins: biological and toxicological implications. Picariello G, Ferranti P, Fierro O, Mamone G, Caira S, Di Luccia A, Monica S, Addeo F. J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Feb 01; 878(3-4):295-308. PubMed ID: 19962948 [Abstract] [Full Text] [Related] Page: [Next] [New Search]