These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 20526997

  • 1. High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics.
    Liao L, Bai J, Lin YC, Qu Y, Huang Y, Duan X.
    Adv Mater; 2010 May 04; 22(17):1941-5. PubMed ID: 20526997
    [No Abstract] [Full Text] [Related]

  • 2. Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics.
    Liao L, Bai J, Cheng R, Lin YC, Jiang S, Huang Y, Duan X.
    Nano Lett; 2010 May 12; 10(5):1917-21. PubMed ID: 20380441
    [Abstract] [Full Text] [Related]

  • 3. Gate-defined graphene double quantum dot and excited state spectroscopy.
    Liu XL, Hug D, Vandersypen LM.
    Nano Lett; 2010 May 12; 10(5):1623-7. PubMed ID: 20377196
    [Abstract] [Full Text] [Related]

  • 4. Fabrication and characterization of directly-assembled ZnO nanowire field effect transistors with polymer gate dielectrics.
    Yoon A, Hong WK, Lee T.
    J Nanosci Nanotechnol; 2007 Nov 12; 7(11):4101-5. PubMed ID: 18047128
    [Abstract] [Full Text] [Related]

  • 5. Coplanar-gate transparent graphene transistors and inverters on plastic.
    Kim BJ, Lee SK, Kang MS, Ahn JH, Cho JH.
    ACS Nano; 2012 Oct 23; 6(10):8646-51. PubMed ID: 22954200
    [Abstract] [Full Text] [Related]

  • 6. Operation of graphene transistors at gigahertz frequencies.
    Lin YM, Jenkins KA, Valdes-Garcia A, Small JP, Farmer DB, Avouris P.
    Nano Lett; 2009 Jan 23; 9(1):422-6. PubMed ID: 19099364
    [Abstract] [Full Text] [Related]

  • 7. High-kappa oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors.
    Liao L, Bai J, Qu Y, Lin YC, Li Y, Huang Y, Duan X.
    Proc Natl Acad Sci U S A; 2010 Apr 13; 107(15):6711-5. PubMed ID: 20308584
    [Abstract] [Full Text] [Related]

  • 8. Graphene-graphite oxide field-effect transistors.
    Standley B, Mendez A, Schmidgall E, Bockrath M.
    Nano Lett; 2012 Mar 14; 12(3):1165-9. PubMed ID: 22380722
    [Abstract] [Full Text] [Related]

  • 9. Low-voltage back-gated atmospheric pressure chemical vapor deposition based graphene-striped channel transistor with high-κ dielectric showing room-temperature mobility > 11,000 cm(2)/V·s.
    Smith C, Qaisi R, Liu Z, Yu Q, Hussain MM.
    ACS Nano; 2013 Jul 23; 7(7):5818-23. PubMed ID: 23777434
    [Abstract] [Full Text] [Related]

  • 10. Stretchable graphene transistors with printed dielectrics and gate electrodes.
    Lee SK, Kim BJ, Jang H, Yoon SC, Lee C, Hong BH, Rogers JA, Cho JH, Ahn JH.
    Nano Lett; 2011 Nov 09; 11(11):4642-6. PubMed ID: 21973013
    [Abstract] [Full Text] [Related]

  • 11. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors.
    Farmer DB, Chiu HY, Lin YM, Jenkins KA, Xia F, Avouris P.
    Nano Lett; 2009 Dec 09; 9(12):4474-8. PubMed ID: 19883119
    [Abstract] [Full Text] [Related]

  • 12. Quantum capacitance limited vertical scaling of graphene field-effect transistor.
    Xu H, Zhang Z, Wang Z, Wang S, Liang X, Peng LM.
    ACS Nano; 2011 Mar 22; 5(3):2340-7. PubMed ID: 21323320
    [Abstract] [Full Text] [Related]

  • 13. A novel method for fabricating sub-16 nm footprint T-gate nanoimprint molds.
    Peng C, Liang X, Chou SY.
    Nanotechnology; 2009 May 06; 20(18):185302. PubMed ID: 19420609
    [Abstract] [Full Text] [Related]

  • 14. Adsorption of ammonia on graphene.
    Romero HE, Joshi P, Gupta AK, Gutierrez HR, Cole MW, Tadigadapa SA, Eklund PC.
    Nanotechnology; 2009 Jun 17; 20(24):245501. PubMed ID: 19468162
    [Abstract] [Full Text] [Related]

  • 15. High-performance flexible transparent thin-film transistors using a hybrid gate dielectric and an amorphous zinc indium tin oxide channel.
    Liu J, Buchholz DB, Chang RP, Facchetti A, Marks TJ.
    Adv Mater; 2010 Jun 04; 22(21):2333-7. PubMed ID: 20491089
    [No Abstract] [Full Text] [Related]

  • 16. Si-nanowire-array-based NOT-logic circuits constructed on plastic substrates using top-down methods.
    Jeon Y, Kang J, Lee M, Moon T, Kim S.
    J Nanosci Nanotechnol; 2013 May 04; 13(5):3350-3. PubMed ID: 23858857
    [Abstract] [Full Text] [Related]

  • 17. State-of-the-art graphene high-frequency electronics.
    Wu Y, Jenkins KA, Valdes-Garcia A, Farmer DB, Zhu Y, Bol AA, Dimitrakopoulos C, Zhu W, Xia F, Avouris P, Lin YM.
    Nano Lett; 2012 Jun 13; 12(6):3062-7. PubMed ID: 22563820
    [Abstract] [Full Text] [Related]

  • 18. Realization of a silicon nanowire vertical surround-gate field-effect transistor.
    Schmidt V, Riel H, Senz S, Karg S, Riess W, Gösele U.
    Small; 2006 Jan 13; 2(1):85-8. PubMed ID: 17193560
    [No Abstract] [Full Text] [Related]

  • 19. Gate-defined confinement in bilayer graphene-hexagonal boron nitride hybrid devices.
    Goossens AS, Driessen SC, Baart TA, Watanabe K, Taniguchi T, Vandersypen LM.
    Nano Lett; 2012 Sep 12; 12(9):4656-60. PubMed ID: 22906072
    [Abstract] [Full Text] [Related]

  • 20. Gate coupling and charge distribution in nanowire field effect transistors.
    Khanal DR, Wu J.
    Nano Lett; 2007 Sep 12; 7(9):2778-83. PubMed ID: 17718588
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.