These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
338 related items for PubMed ID: 20541446
1. Understanding the HIV-1 protease nelfinavir resistance mutation D30N in subtypes B and C through molecular dynamics simulations. Soares RO, Batista PR, Costa MG, Dardenne LE, Pascutti PG, Soares MA. J Mol Graph Model; 2010 Sep; 29(2):137-47. PubMed ID: 20541446 [Abstract] [Full Text] [Related]
2. Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants. Kozísek M, Bray J, Rezácová P, Sasková K, Brynda J, Pokorná J, Mammano F, Rulísek L, Konvalinka J. J Mol Biol; 2007 Dec 07; 374(4):1005-16. PubMed ID: 17977555 [Abstract] [Full Text] [Related]
3. Resistant mechanism against nelfinavir of human immunodeficiency virus type 1 proteases. Ode H, Ota M, Neya S, Hata M, Sugiura W, Hoshino T. J Phys Chem B; 2005 Jan 13; 109(1):565-74. PubMed ID: 16851048 [Abstract] [Full Text] [Related]
4. Mechanism of drug resistance due to N88S in CRF01_AE HIV-1 protease, analyzed by molecular dynamics simulations. Ode H, Matsuyama S, Hata M, Hoshino T, Kakizawa J, Sugiura W. J Med Chem; 2007 Apr 19; 50(8):1768-77. PubMed ID: 17367119 [Abstract] [Full Text] [Related]
5. Structural studies on molecular mechanisms of Nelfinavir resistance caused by non-active site mutation V77I in HIV-1 protease. Gupta A, Jamal S, Goyal S, Jain R, Wahi D, Grover A. BMC Bioinformatics; 2015 Apr 19; 16 Suppl 19(Suppl 19):S10. PubMed ID: 26695135 [Abstract] [Full Text] [Related]
6. Within-host co-evolution of Gag P453L and protease D30N/N88D demonstrates virological advantage in a highly protease inhibitor-exposed HIV-1 case. Shibata J, Sugiura W, Ode H, Iwatani Y, Sato H, Tsang H, Matsuda M, Hasegawa N, Ren F, Tanaka H. Antiviral Res; 2011 Apr 19; 90(1):33-41. PubMed ID: 21338625 [Abstract] [Full Text] [Related]
7. Mutational patterns and correlated amino acid substitutions in the HIV-1 protease after virological failure to nelfinavir- and lopinavir/ritonavir-based treatments. Garriga C, Pérez-Elías MJ, Delgado R, Ruiz L, Nájera R, Pumarola T, Alonso-Socas Mdel M, García-Bujalance S, Menéndez-Arias L, Spanish Group for the Study of Antiretroviral Drug Resistance. J Med Virol; 2007 Nov 19; 79(11):1617-28. PubMed ID: 17854027 [Abstract] [Full Text] [Related]
8. Mutation D30N is not preferentially selected by human immunodeficiency virus type 1 subtype C in the development of resistance to nelfinavir. Grossman Z, Paxinos EE, Averbuch D, Maayan S, Parkin NT, Engelhard D, Lorber M, Istomin V, Shaked Y, Mendelson E, Ram D, Petropoulos CJ, Schapiro JM. Antimicrob Agents Chemother; 2004 Jun 19; 48(6):2159-65. PubMed ID: 15155216 [Abstract] [Full Text] [Related]
9. Diverse pattern of protease inhibitor resistance mutations in HIV-1 infected patients failing nelfinavir. Svedhem V, Lindkvist A, Bergroth T, Knut L, Sönnerborg A. J Med Virol; 2005 Aug 19; 76(4):447-51. PubMed ID: 15977242 [Abstract] [Full Text] [Related]
10. Impact of human immunodeficiency virus type 1 subtype C on drug resistance mutations in patients from Botswana failing a nelfinavir-containing regimen. Doualla-Bell F, Avalos A, Gaolathe T, Mine M, Gaseitsiwe S, Ndwapi N, Novitsky VA, Brenner B, Oliveira M, Moisi D, Moffat H, Thior I, Essex M, Wainberg MA. Antimicrob Agents Chemother; 2006 Jun 19; 50(6):2210-3. PubMed ID: 16723586 [Abstract] [Full Text] [Related]
11. Persistence of mutations during replication of an HIV library containing combinations of selected protease mutations. Song W, Maeda Y, Tenpaku A, Harada S, Yusa K. Antiviral Res; 2004 Mar 19; 61(3):173-80. PubMed ID: 15168798 [Abstract] [Full Text] [Related]
12. Discordant genotypic interpretation and phenotypic role of protease mutations in HIV-1 subtypes B and G. Santos AF, Abecasis AB, Vandamme AM, Camacho RJ, Soares MA. J Antimicrob Chemother; 2009 Mar 19; 63(3):593-9. PubMed ID: 19136678 [Abstract] [Full Text] [Related]
14. Secondary mutations M36I and A71V in the human immunodeficiency virus type 1 protease can provide an advantage for the emergence of the primary mutation D30N. Clemente JC, Hemrajani R, Blum LE, Goodenow MM, Dunn BM. Biochemistry; 2003 Dec 30; 42(51):15029-35. PubMed ID: 14690411 [Abstract] [Full Text] [Related]
16. The role of polymorphisms at position 89 in the HIV-1 protease gene in the development of drug resistance to HIV-1 protease inhibitors. Martinez-Cajas JL, Wainberg MA, Oliveira M, Asahchop EL, Doualla-Bell F, Lisovsky I, Moisi D, Mendelson E, Grossman Z, Brenner BG. J Antimicrob Chemother; 2012 Apr 30; 67(4):988-94. PubMed ID: 22315096 [Abstract] [Full Text] [Related]
17. Structural Basis of Why Nelfinavir-Resistant D30N Mutant of HIV-1 Protease Remains Susceptible to Saquinavir. Prashar V, Bihani SC, Ferrer JL, Hosur MV. Chem Biol Drug Des; 2015 Sep 30; 86(3):302-8. PubMed ID: 25487655 [Abstract] [Full Text] [Related]
19. Compensatory mutations at the HIV cleavage sites p7/p1 and p1/p6-gag in therapy-naive and therapy-experienced patients. Verheyen J, Litau E, Sing T, Däumer M, Balduin M, Oette M, Fätkenheuer G, Rockstroh JK, Schuldenzucker U, Hoffmann D, Pfister H, Kaiser R. Antivir Ther; 2006 Sep 30; 11(7):879-87. PubMed ID: 17302250 [Abstract] [Full Text] [Related]