These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


103 related items for PubMed ID: 20543298

  • 1. Sounding better: fast audio cues increase walk speed in treadmill-mediated virtual rehabilitation environments.
    Powell W, Stevens B, Hand S, Simmonds M.
    Stud Health Technol Inform; 2010; 154():202-7. PubMed ID: 20543298
    [Abstract] [Full Text] [Related]

  • 2. The effect of virtual reality on gait variability.
    Katsavelis D, Mukherjee M, Decker L, Stergiou N.
    Nonlinear Dynamics Psychol Life Sci; 2010 Jul; 14(3):239-56. PubMed ID: 20587300
    [Abstract] [Full Text] [Related]

  • 3. Spatiotemporal gait deviations in a virtual reality environment.
    Hollman JH, Brey RH, Robb RA, Bang TJ, Kaufman KR.
    Gait Posture; 2006 Jun; 23(4):441-4. PubMed ID: 16095905
    [Abstract] [Full Text] [Related]

  • 4. Variability of lower extremity joint kinematics during backward walking in a virtual environment.
    Katsavelis D, Mukherjee M, Decker L, Stergiou N.
    Nonlinear Dynamics Psychol Life Sci; 2010 Apr; 14(2):165-78. PubMed ID: 20346261
    [Abstract] [Full Text] [Related]

  • 5. Rehabilitation treatment of gait in patients with Parkinson's disease with freezing: a comparison between two physical therapy protocols using visual and auditory cues with or without treadmill training.
    Frazzitta G, Maestri R, Uccellini D, Bertotti G, Abelli P.
    Mov Disord; 2009 Jun 15; 24(8):1139-43. PubMed ID: 19370729
    [Abstract] [Full Text] [Related]

  • 6. Virtual reality cues for improvement of gait in patients with multiple sclerosis.
    Baram Y, Miller A.
    Neurology; 2006 Jan 24; 66(2):178-81. PubMed ID: 16434649
    [Abstract] [Full Text] [Related]

  • 7. Cognitive load and dual-task performance during locomotion poststroke: a feasibility study using a functional virtual environment.
    Kizony R, Levin MF, Hughey L, Perez C, Fung J.
    Phys Ther; 2010 Feb 24; 90(2):252-60. PubMed ID: 20023003
    [Abstract] [Full Text] [Related]

  • 8. The effect of rhythmic somatosensory cueing on gait in patients with Parkinson's disease.
    van Wegen E, de Goede C, Lim I, Rietberg M, Nieuwboer A, Willems A, Jones D, Rochester L, Hetherington V, Berendse H, Zijlmans J, Wolters E, Kwakkel G.
    J Neurol Sci; 2006 Oct 25; 248(1-2):210-4. PubMed ID: 16780887
    [Abstract] [Full Text] [Related]

  • 9. Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson's disease.
    Frenkel-Toledo S, Giladi N, Peretz C, Herman T, Gruendlinger L, Hausdorff JM.
    Mov Disord; 2005 Sep 25; 20(9):1109-14. PubMed ID: 15929090
    [Abstract] [Full Text] [Related]

  • 10. Does walking in a virtual environment induce unstable gait? An examination of vertical ground reaction forces.
    Hollman JH, Brey RH, Bang TJ, Kaufman KR.
    Gait Posture; 2007 Jul 25; 26(2):289-94. PubMed ID: 17056258
    [Abstract] [Full Text] [Related]

  • 11. Adult age differences in familiarization to treadmill walking within virtual environments.
    Schellenbach M, Lövdén M, Verrel J, Krüger A, Lindenberger U.
    Gait Posture; 2010 Mar 25; 31(3):295-9. PubMed ID: 20031413
    [Abstract] [Full Text] [Related]

  • 12. A comparison of gait biomechanics and metabolic requirements of overground and treadmill walking in people with stroke.
    Brouwer B, Parvataneni K, Olney SJ.
    Clin Biomech (Bristol); 2009 Nov 25; 24(9):729-34. PubMed ID: 19664866
    [Abstract] [Full Text] [Related]

  • 13. The 3D path of body centre of mass during adult human walking on force treadmill.
    Tesio L, Rota V, Chessa C, Perucca L.
    J Biomech; 2010 Mar 22; 43(5):938-44. PubMed ID: 19959172
    [Abstract] [Full Text] [Related]

  • 14. Virtual reality-enhanced partial body weight-supported treadmill training poststroke: feasibility and effectiveness in 6 subjects.
    Walker ML, Ringleb SI, Maihafer GC, Walker R, Crouch JR, Van Lunen B, Morrison S.
    Arch Phys Med Rehabil; 2010 Jan 22; 91(1):115-22. PubMed ID: 20103405
    [Abstract] [Full Text] [Related]

  • 15. Estimation of detection thresholds for redirected walking techniques.
    Steinicke F, Bruder G, Jerald J, Frenz H, Lappe M.
    IEEE Trans Vis Comput Graph; 2010 Jan 22; 16(1):17-27. PubMed ID: 19910658
    [Abstract] [Full Text] [Related]

  • 16. Influence of walking speed on lower limb muscle activity and energy consumption during treadmill walking of hemiparetic patients.
    Hesse S, Werner C, Paul T, Bardeleben A, Chaler J.
    Arch Phys Med Rehabil; 2001 Nov 22; 82(11):1547-50. PubMed ID: 11689974
    [Abstract] [Full Text] [Related]

  • 17. Treadmill Interface for Virtual Reality vs. Overground Walking: A Comparison of Gait in Individuals with and without Pain.
    Powell W, Stevens B, Simmonds M.
    Stud Health Technol Inform; 2009 Nov 22; 144():198-203. PubMed ID: 19592763
    [Abstract] [Full Text] [Related]

  • 18. A novel method for automatic treadmill speed adaptation.
    von Zitzewitz J, Bernhardt M, Riener R.
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep 22; 15(3):401-9. PubMed ID: 17894272
    [Abstract] [Full Text] [Related]

  • 19. Modulation of walking speed by changing optic flow in persons with stroke.
    Lamontagne A, Fung J, McFadyen BJ, Faubert J.
    J Neuroeng Rehabil; 2007 Jun 26; 4():22. PubMed ID: 17594501
    [Abstract] [Full Text] [Related]

  • 20. Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion.
    Nilsson NC, Serafin S, Nordahl R.
    IEEE Trans Vis Comput Graph; 2014 Apr 26; 20(4):569-78. PubMed ID: 24650984
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.