These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
175 related items for PubMed ID: 2054353
1. Fourier transform infrared study of the N intermediate of bacteriorhodopsin. Pfefferlé JM, Maeda A, Sasaki J, Yoshizawa T. Biochemistry; 1991 Jul 02; 30(26):6548-56. PubMed ID: 2054353 [Abstract] [Full Text] [Related]
2. Water structural changes in the bacteriorhodopsin photocycle: analysis by Fourier transform infrared spectroscopy. Maeda A, Sasaki J, Shichida Y, Yoshizawa T. Biochemistry; 1992 Jan 21; 31(2):462-7. PubMed ID: 1731905 [Abstract] [Full Text] [Related]
3. Structures of aspartic acid-96 in the L and N intermediates of bacteriorhodopsin: analysis by Fourier transform infrared spectroscopy. Maeda A, Sasaki J, Shichida Y, Yoshizawa T, Chang M, Ni B, Needleman R, Lanyi JK. Biochemistry; 1992 May 19; 31(19):4684-90. PubMed ID: 1316157 [Abstract] [Full Text] [Related]
4. Interaction of aspartate-85 with a water molecule and the protonated Schiff base in the L intermediate of bacteriorhodopsin: a Fourier-transform infrared spectroscopic study. Maeda A, Sasaki J, Yamazaki Y, Needleman R, Lanyi JK. Biochemistry; 1994 Feb 22; 33(7):1713-7. PubMed ID: 8110773 [Abstract] [Full Text] [Related]
5. Water structural changes in the L and M photocycle intermediates of bacteriorhodopsin as revealed by time-resolved step-scan Fourier transform infrared (FTIR) spectroscopy. Morgan JE, Vakkasoglu AS, Gennis RB, Maeda A. Biochemistry; 2007 Mar 13; 46(10):2787-96. PubMed ID: 17300175 [Abstract] [Full Text] [Related]
6. Protein changes associated with reprotonation of the Schiff base in the photocycle of Asp96-->Asn bacteriorhodopsin. The MN intermediate with unprotonated Schiff base but N-like protein structure. Sasaki J, Shichida Y, Lanyi JK, Maeda A. J Biol Chem; 1992 Oct 15; 267(29):20782-6. PubMed ID: 1400394 [Abstract] [Full Text] [Related]
9. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts regenerated with deuterated tyrosine. Dollinger G, Eisenstein L, Lin SL, Nakanishi K, Termini J. Biochemistry; 1986 Oct 21; 25(21):6524-33. PubMed ID: 3790539 [Abstract] [Full Text] [Related]
10. Complete identification of C = O stretching vibrational bands of protonated aspartic acid residues in the difference infrared spectra of M and N intermediates versus bacteriorhodopsin. Sasaki J, Lanyi JK, Needleman R, Yoshizawa T, Maeda A. Biochemistry; 1994 Mar 22; 33(11):3178-84. PubMed ID: 8136352 [Abstract] [Full Text] [Related]
12. O-H stretching vibration in Fourier transform difference infrared spectra of bacteriorhodopsin. Chang CW, Sekiya N, Yoshihara K. FEBS Lett; 1991 Aug 05; 287(1-2):157-9. PubMed ID: 1879524 [Abstract] [Full Text] [Related]
13. Role of aspartate-96 in proton translocation by bacteriorhodopsin. Gerwert K, Hess B, Soppa J, Oesterhelt D. Proc Natl Acad Sci U S A; 1989 Jul 05; 86(13):4943-7. PubMed ID: 2544884 [Abstract] [Full Text] [Related]
14. Relocation of water molecules between the Schiff base and the Thr46-Asp96 region during light-driven unidirectional proton transport by bacteriorhodopsin: an FTIR study of the N intermediate. Maeda A, Gennis RB, Balashov SP, Ebrey TG. Biochemistry; 2005 Apr 26; 44(16):5960-8. PubMed ID: 15835885 [Abstract] [Full Text] [Related]
15. FTIR difference spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: detection of a stable O-like species and characterization of its photocycle at low temperature. He Y, Krebs MP, Fischer WB, Khorana HG, Rothschild KJ. Biochemistry; 1993 Mar 09; 32(9):2282-90. PubMed ID: 8443171 [Abstract] [Full Text] [Related]
17. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts. Bagley K, Dollinger G, Eisenstein L, Singh AK, Zimányi L. Proc Natl Acad Sci U S A; 1982 Aug 09; 79(16):4972-6. PubMed ID: 6956906 [Abstract] [Full Text] [Related]
18. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy. Weidlich O, Ujj L, Jäger F, Atkinson GH. Biophys J; 1997 May 09; 72(5):2329-41. PubMed ID: 9129836 [Abstract] [Full Text] [Related]
19. Hydrogen bonds of water and C==O groups coordinate long-range structural changes in the L photointermediate of bacteriorhodopsin. Yamazaki Y, Tuzi S, Saitô H, Kandori H, Needleman R, Lanyi JK, Maeda A. Biochemistry; 1996 Apr 02; 35(13):4063-8. PubMed ID: 8672440 [Abstract] [Full Text] [Related]
20. Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence that Thr-46 and Thr-89 form part of a transient network of hydrogen bonds. Rothschild KJ, He YW, Sonar S, Marti T, Khorana HG. J Biol Chem; 1992 Jan 25; 267(3):1615-22. PubMed ID: 1730706 [Abstract] [Full Text] [Related] Page: [Next] [New Search]