These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1607 related items for PubMed ID: 20546737

  • 1. Glucagon-like peptide-2 receptor modulates islet adaptation to metabolic stress in the ob/ob mouse.
    Bahrami J, Longuet C, Baggio LL, Li K, Drucker DJ.
    Gastroenterology; 2010 Sep; 139(3):857-68. PubMed ID: 20546737
    [Abstract] [Full Text] [Related]

  • 2. Novel glucagon-like peptide-1 (GLP-1) analog (Val8)GLP-1 results in significant improvements of glucose tolerance and pancreatic beta-cell function after 3-week daily administration in obese diabetic (ob/ob) mice.
    Green BD, Lavery KS, Irwin N, O'harte FP, Harriott P, Greer B, Bailey CJ, Flatt PR.
    J Pharmacol Exp Ther; 2006 Aug; 318(2):914-21. PubMed ID: 16648370
    [Abstract] [Full Text] [Related]

  • 3. GLP-2 receptor signaling controls circulating bile acid levels but not glucose homeostasis in Gcgr-/- mice and is dispensable for the metabolic benefits ensuing after vertical sleeve gastrectomy.
    Patel A, Yusta B, Matthews D, Charron MJ, Seeley RJ, Drucker DJ.
    Mol Metab; 2018 Oct; 16():45-54. PubMed ID: 29937214
    [Abstract] [Full Text] [Related]

  • 4. ErbB activity links the glucagon-like peptide-2 receptor to refeeding-induced adaptation in the murine small bowel.
    Bahrami J, Yusta B, Drucker DJ.
    Gastroenterology; 2010 Jun; 138(7):2447-56. PubMed ID: 20226187
    [Abstract] [Full Text] [Related]

  • 5. A general and islet cell-enriched overexpression of IGF-I results in normal islet cell growth, hypoglycemia, and significant resistance to experimental diabetes.
    Robertson K, Lu Y, De Jesus K, Li B, Su Q, Lund PK, Liu JL.
    Am J Physiol Endocrinol Metab; 2008 May; 294(5):E928-38. PubMed ID: 18270301
    [Abstract] [Full Text] [Related]

  • 6. Elimination of glucagon-like peptide 1R signaling does not modify weight gain and islet adaptation in mice with combined disruption of leptin and GLP-1 action.
    Scrocchi LA, Hill ME, Saleh J, Perkins B, Drucker DJ.
    Diabetes; 2000 Sep; 49(9):1552-60. PubMed ID: 10969840
    [Abstract] [Full Text] [Related]

  • 7. Glucagon-like peptide-1 gene therapy in obese diabetic mice results in long-term cure of diabetes by improving insulin sensitivity and reducing hepatic gluconeogenesis.
    Lee YS, Shin S, Shigihara T, Hahm E, Liu MJ, Han J, Yoon JW, Jun HS.
    Diabetes; 2007 Jun; 56(6):1671-9. PubMed ID: 17369525
    [Abstract] [Full Text] [Related]

  • 8. Comparison of the subchronic antidiabetic effects of DPP IV-resistant GIP and GLP-1 analogues in obese diabetic (ob/ob) mice.
    Irwin N, McClean PL, Flatt PR.
    J Pept Sci; 2007 Jun; 13(6):400-5. PubMed ID: 17486662
    [Abstract] [Full Text] [Related]

  • 9. Beta-cell function and mass in type 2 diabetes.
    Larsen MO.
    Dan Med Bull; 2009 Aug; 56(3):153-64. PubMed ID: 19728971
    [Abstract] [Full Text] [Related]

  • 10. Native pancreatic alpha-cell adaptation in streptozotocin-induced diabetic primates: importance for pig islet xenotransplantation.
    Dufrane D, Maillart JF, Aouassar N, Goebbels RM, Guiot Y, Gianello P.
    Xenotransplantation; 2009 Aug; 16(3):152-63. PubMed ID: 19566655
    [Abstract] [Full Text] [Related]

  • 11. Chronic administration of alogliptin, a novel, potent, and highly selective dipeptidyl peptidase-4 inhibitor, improves glycemic control and beta-cell function in obese diabetic ob/ob mice.
    Moritoh Y, Takeuchi K, Asakawa T, Kataoka O, Odaka H.
    Eur J Pharmacol; 2008 Jul 07; 588(2-3):325-32. PubMed ID: 18499100
    [Abstract] [Full Text] [Related]

  • 12. [Glucagon-like peptides--synthesis, biological actions and some clinical implications].
    Otto Buczkowska E, Dworzecki T.
    Przegl Lek; 2004 Jul 07; 61(9):947-50. PubMed ID: 15803906
    [Abstract] [Full Text] [Related]

  • 13. Gastric relaxation induced by glucagon-like peptide-2 in mice fed a high-fat diet or fasted.
    Rotondo A, Amato A, Baldassano S, Lentini L, Mulè F.
    Peptides; 2011 Aug 07; 32(8):1587-92. PubMed ID: 21771622
    [Abstract] [Full Text] [Related]

  • 14. Long-term inhibition of the glucagon receptor with a monoclonal antibody in mice causes sustained improvement in glycemic control, with reversible alpha-cell hyperplasia and hyperglucagonemia.
    Gu W, Yan H, Winters KA, Komorowski R, Vonderfecht S, Atangan L, Sivits G, Hill D, Yang J, Bi V, Shen Y, Hu S, Boone T, Lindberg RA, Véniant MM.
    J Pharmacol Exp Ther; 2009 Dec 07; 331(3):871-81. PubMed ID: 19720878
    [Abstract] [Full Text] [Related]

  • 15. ErbB signaling is required for the proliferative actions of GLP-2 in the murine gut.
    Yusta B, Holland D, Koehler JA, Maziarz M, Estall JL, Higgins R, Drucker DJ.
    Gastroenterology; 2009 Sep 07; 137(3):986-96. PubMed ID: 19523469
    [Abstract] [Full Text] [Related]

  • 16. The essential role of insulin-like growth factor-1 in the intestinal tropic effects of glucagon-like peptide-2 in mice.
    Dubé PE, Forse CL, Bahrami J, Brubaker PL.
    Gastroenterology; 2006 Aug 07; 131(2):589-605. PubMed ID: 16890611
    [Abstract] [Full Text] [Related]

  • 17. Chemical cholecystokinin receptor activation protects against obesity-diabetes in high fat fed mice and has sustainable beneficial effects in genetic ob/ob mice.
    Irwin N, Montgomery IA, Moffett RC, Flatt PR.
    Biochem Pharmacol; 2013 Jan 01; 85(1):81-91. PubMed ID: 23085436
    [Abstract] [Full Text] [Related]

  • 18. Glucagon-like peptide-2 and mouse intestinal adaptation to a high-fat diet.
    Baldassano S, Amato A, Cappello F, Rappa F, Mulè F.
    J Endocrinol; 2013 Apr 01; 217(1):11-20. PubMed ID: 23308022
    [Abstract] [Full Text] [Related]

  • 19. Temporal and dietary fat content-dependent islet adaptation to high-fat feeding-induced glucose intolerance in mice.
    Winzell MS, Magnusson C, Ahrén B.
    Metabolism; 2007 Jan 01; 56(1):122-8. PubMed ID: 17161234
    [Abstract] [Full Text] [Related]

  • 20. Duodenal-jejunal bypass protects GK rats from {beta}-cell loss and aggravation of hyperglycemia and increases enteroendocrine cells coexpressing GIP and GLP-1.
    Speck M, Cho YM, Asadi A, Rubino F, Kieffer TJ.
    Am J Physiol Endocrinol Metab; 2011 May 01; 300(5):E923-32. PubMed ID: 21304061
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 81.