These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


233 related items for PubMed ID: 20549639

  • 1. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil.
    El-Temsah YS, Joner EJ.
    Environ Toxicol; 2012 Jan; 27(1):42-9. PubMed ID: 20549639
    [Abstract] [Full Text] [Related]

  • 2. Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles.
    Gil-Díaz M, Alonso J, Rodríguez-Valdés E, Pinilla P, Lobo MC.
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014 Jan; 49(12):1361-9. PubMed ID: 25072767
    [Abstract] [Full Text] [Related]

  • 3. Phytotoxicity of iron-based materials in mung bean: Seed germination tests.
    Sun Y, Wang W, Zheng F, Zhang S, Wang F, Liu S.
    Chemosphere; 2020 Jul; 251():126432. PubMed ID: 32169709
    [Abstract] [Full Text] [Related]

  • 4. Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa.
    Wang J, Fang Z, Cheng W, Tsang PE, Zhao D.
    Ecotoxicology; 2016 Aug; 25(6):1202-10. PubMed ID: 27207497
    [Abstract] [Full Text] [Related]

  • 5. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI.
    Wang Y, Fang Z, Kang Y, Tsang EP.
    J Hazard Mater; 2014 Jun 30; 275():230-7. PubMed ID: 24880637
    [Abstract] [Full Text] [Related]

  • 6. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil.
    El-Temsah YS, Sevcu A, Bobcikova K, Cernik M, Joner EJ.
    Chemosphere; 2016 Feb 30; 144():2221-8. PubMed ID: 26598990
    [Abstract] [Full Text] [Related]

  • 7. Evaluating phytotoxicity of bare and starch-stabilized zero-valent iron nanoparticles in mung bean.
    Sun Y, Jing R, Zheng F, Zhang S, Jiao W, Wang F.
    Chemosphere; 2019 Dec 30; 236():124336. PubMed ID: 31310976
    [Abstract] [Full Text] [Related]

  • 8. Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations.
    Li X, Yang Y, Gao B, Zhang M.
    PLoS One; 2015 Dec 30; 10(4):e0122884. PubMed ID: 25901959
    [Abstract] [Full Text] [Related]

  • 9. Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance.
    Brasili E, Bavasso I, Petruccelli V, Vilardi G, Valletta A, Dal Bosco C, Gentili A, Pasqua G, Di Palma L.
    Sci Rep; 2020 Feb 05; 10(1):1920. PubMed ID: 32024866
    [Abstract] [Full Text] [Related]

  • 10. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation.
    Wang J, Fang Z, Cheng W, Yan X, Tsang PE, Zhao D.
    Environ Pollut; 2016 Mar 05; 210():338-45. PubMed ID: 26803790
    [Abstract] [Full Text] [Related]

  • 11. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil.
    El-Temsah YS, Joner EJ.
    Chemosphere; 2012 Sep 05; 89(1):76-82. PubMed ID: 22595530
    [Abstract] [Full Text] [Related]

  • 12. Environmental factors influencing remediation of TNT-contaminated water and soil with nanoscale zero-valent iron particles.
    Jiamjitrpanich W, Polprasert C, Parkpian P, Delaune RD, Jugsujinda A.
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Sep 05; 45(3):263-74. PubMed ID: 20390867
    [Abstract] [Full Text] [Related]

  • 13. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods.
    El-Temsah YS, Joner EJ.
    Chemosphere; 2013 Jun 05; 92(1):131-7. PubMed ID: 23522781
    [Abstract] [Full Text] [Related]

  • 14. Influence of soil porewater properties on the fate and toxicity of silver nanoparticles to Caenorhabditis elegans.
    Schultz CL, Lahive E, Lawlor A, Crossley A, Puntes V, Unrine JM, Svendsen C, Spurgeon DJ.
    Environ Toxicol Chem; 2018 Oct 05; 37(10):2609-2618. PubMed ID: 30003578
    [Abstract] [Full Text] [Related]

  • 15. Effect of zero valent iron nanoparticles to Eisenia fetida in three soil types.
    Yirsaw BD, Mayilswami S, Megharaj M, Chen Z, Naidu R.
    Environ Sci Pollut Res Int; 2016 May 05; 23(10):9822-31. PubMed ID: 26856861
    [Abstract] [Full Text] [Related]

  • 16. Evaluation of the stability of a nanoremediation strategy using barley plants.
    Gil-Díaz M, González A, Alonso J, Lobo MC.
    J Environ Manage; 2016 Jan 01; 165():150-158. PubMed ID: 26431642
    [Abstract] [Full Text] [Related]

  • 17. The impact of nanoscale zero-valent iron particles on soil microbial communities is soil dependent.
    Gómez-Sagasti MT, Epelde L, Anza M, Urra J, Alkorta I, Garbisu C.
    J Hazard Mater; 2019 Feb 15; 364():591-599. PubMed ID: 30390579
    [Abstract] [Full Text] [Related]

  • 18. Zero-valent iron particles for PCB degradation and an evaluation of their effects on bacteria, plants, and soil organisms.
    Ševců A, El-Temsah YS, Filip J, Joner EJ, Bobčíková K, Černík M.
    Environ Sci Pollut Res Int; 2017 Sep 15; 24(26):21191-21202. PubMed ID: 28733821
    [Abstract] [Full Text] [Related]

  • 19. Nanosilver and Nano Zero-Valent Iron Exposure Affects Nutrient Exchange Across the Sediment-Water Interface.
    Buchkowski RW, Williams CJ, Kelly J, Veinot JG, Xenopoulos MA.
    Bull Environ Contam Toxicol; 2016 Jan 15; 96(1):83-9. PubMed ID: 26611367
    [Abstract] [Full Text] [Related]

  • 20. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron.
    Dong H, Xie Y, Zeng G, Tang L, Liang J, He Q, Zhao F, Zeng Y, Wu Y.
    Chemosphere; 2016 Feb 15; 144():1682-9. PubMed ID: 26519799
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.