These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


233 related items for PubMed ID: 20549639

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (nZVI) particles.
    Fajardo C, Saccà ML, Martinez-Gomariz M, Costa G, Nande M, Martin M.
    Chemosphere; 2013 Oct; 93(6):1077-83. PubMed ID: 23816452
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Toxicity of zero-valent iron nanoparticles to soil organisms and the associated defense mechanisms: a review.
    Zhang S, Yi K, Chen A, Shao J, Peng L, Luo S.
    Ecotoxicology; 2022 Aug; 31(6):873-883. PubMed ID: 35834074
    [Abstract] [Full Text] [Related]

  • 25. Toxicity assessment of zero valent iron nanoparticles on Artemia salina.
    Kumar D, Roy R, Parashar A, Raichur AM, Chandrasekaran N, Mukherjee A, Mukherjee A.
    Environ Toxicol; 2017 May; 32(5):1617-1627. PubMed ID: 28101988
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations.
    Němeček J, Lhotský O, Cajthaml T.
    Sci Total Environ; 2014 Jul 01; 485-486():739-747. PubMed ID: 24369106
    [Abstract] [Full Text] [Related]

  • 28. Residual impact of aged nZVI on heavy metal-polluted soils.
    Fajardo C, Gil-Díaz M, Costa G, Alonso J, Guerrero AM, Nande M, Lobo MC, Martín M.
    Sci Total Environ; 2015 Dec 01; 535():79-84. PubMed ID: 25863574
    [Abstract] [Full Text] [Related]

  • 29. Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms.
    Saccà ML, Fajardo C, Costa G, Lobo C, Nande M, Martin M.
    Chemosphere; 2014 Jun 01; 104():184-9. PubMed ID: 24287264
    [Abstract] [Full Text] [Related]

  • 30. Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology.
    Yasur J, Rani PU.
    Environ Sci Pollut Res Int; 2013 Dec 01; 20(12):8636-48. PubMed ID: 23702569
    [Abstract] [Full Text] [Related]

  • 31. Reducing As availability in calcareous soils using nanoscale zero valent iron.
    Azari P, Bostani AA.
    Environ Sci Pollut Res Int; 2017 Sep 01; 24(25):20438-20445. PubMed ID: 28707247
    [Abstract] [Full Text] [Related]

  • 32. Impact of hydrocarbons from a diesel fuel on the germination and early growth of subantarctic plants.
    Macoustra GK, King CK, Wasley J, Robinson SA, Jolley DF.
    Environ Sci Process Impacts; 2015 Jul 01; 17(7):1238-48. PubMed ID: 26121427
    [Abstract] [Full Text] [Related]

  • 33. Effects of soil and dietary exposures to Ag nanoparticles and AgNO₃ in the terrestrial isopod Porcellionides pruinosus.
    Tourinho PS, van Gestel CA, Jurkschat K, Soares AM, Loureiro S.
    Environ Pollut; 2015 Oct 01; 205():170-7. PubMed ID: 26071943
    [Abstract] [Full Text] [Related]

  • 34. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: A review.
    Xue W, Huang D, Zeng G, Wan J, Cheng M, Zhang C, Hu C, Li J.
    Chemosphere; 2018 Nov 01; 210():1145-1156. PubMed ID: 30208540
    [Abstract] [Full Text] [Related]

  • 35. Influence of nanoscale zero-valent iron on hydraulic conductivity of a residual clayey soil and modeling of the filtration parameter.
    Reginatto C, Cecchin I, Salvagni Heineck K, Thomé A, Reddy KR.
    Environ Sci Pollut Res Int; 2020 Mar 01; 27(9):9288-9296. PubMed ID: 31916159
    [Abstract] [Full Text] [Related]

  • 36. A nanoremediation strategy for the recovery of an As-polluted soil.
    Gil-Díaz M, Diez-Pascual S, González A, Alonso J, Rodríguez-Valdés E, Gallego JR, Lobo MC.
    Chemosphere; 2016 Apr 01; 149():137-45. PubMed ID: 26855217
    [Abstract] [Full Text] [Related]

  • 37. New insights into the impact of nZVI on soil microbial biodiversity and functionality.
    Fajardo C, García-Cantalejo J, Botías P, Costa G, Nande M, Martin M.
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019 Apr 01; 54(3):157-167. PubMed ID: 30588856
    [Abstract] [Full Text] [Related]

  • 38. Differential alteration in reproductive toxicity of medaka fish on exposure to nanoscale zerovalent iron and its oxidation products.
    Yang CH, Kung TA, Chen PJ.
    Environ Pollut; 2019 Sep 01; 252(Pt B):1920-1932. PubMed ID: 31227347
    [Abstract] [Full Text] [Related]

  • 39. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.).
    Guha T, Ravikumar KVG, Mukherjee A, Mukherjee A, Kundu R.
    Plant Physiol Biochem; 2018 Jun 01; 127():403-413. PubMed ID: 29679934
    [Abstract] [Full Text] [Related]

  • 40. Physiological effects of zero-valent iron nanoparticles in rhizosphere on edible crop, Medicago sativa (Alfalfa), grown in soil.
    Kim JH, Kim D, Seo SM, Kim D.
    Ecotoxicology; 2019 Oct 01; 28(8):869-877. PubMed ID: 31392635
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.