These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


233 related items for PubMed ID: 20549639

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 43. Phytotoxic effect of silver nanoparticles on seed germination and growth of terrestrial plants.
    Budhani S, Egboluche NP, Arslan Z, Yu H, Deng H.
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2019; 37(4):330-355. PubMed ID: 31661365
    [Abstract] [Full Text] [Related]

  • 44. Nanoscale zerovalent iron (nZVI) at environmentally relevant concentrations induced multigenerational reproductive toxicity in Caenorhabditis elegans.
    Yang YF, Chen PJ, Liao VH.
    Chemosphere; 2016 May; 150():615-623. PubMed ID: 26830375
    [Abstract] [Full Text] [Related]

  • 45. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent.
    Pawlett M, Ritz K, Dorey RA, Rocks S, Ramsden J, Harris JA.
    Environ Sci Pollut Res Int; 2013 Feb; 20(2):1041-9. PubMed ID: 23007947
    [Abstract] [Full Text] [Related]

  • 46. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants.
    Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES.
    PLoS One; 2012 Feb; 7(10):e47674. PubMed ID: 23091638
    [Abstract] [Full Text] [Related]

  • 47. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles.
    Su H, Fang Z, Tsang PE, Zheng L, Cheng W, Fang J, Zhao D.
    J Hazard Mater; 2016 Nov 15; 318():533-540. PubMed ID: 27469041
    [Abstract] [Full Text] [Related]

  • 48. Separation and Analysis of Nanoscale Zero-Valent Iron from Soil.
    Li P, Lv F, Xu J, Yang K, Lin D.
    Anal Chem; 2021 Jul 27; 93(29):10187-10195. PubMed ID: 34254793
    [Abstract] [Full Text] [Related]

  • 49. Effects of silver nanoparticles and silver nitrate in the earthworm reproduction test.
    Schlich K, Klawonn T, Terytze K, Hund-Rinke K.
    Environ Toxicol Chem; 2013 Jan 27; 32(1):181-8. PubMed ID: 23059754
    [Abstract] [Full Text] [Related]

  • 50. Soil properties determine the impact of nZVI on Lactuca sativa L and its rhizosphere.
    Gil-Díaz M, Álvarez-Aparicio J, Alonso J, Mancho C, Lobo MC, González J, García-Gonzalo P.
    Environ Pollut; 2024 Jan 15; 341():122683. PubMed ID: 37827356
    [Abstract] [Full Text] [Related]

  • 51. Nanoscale Zero-Valent Iron Has Minimum Toxicological Risk on the Germination and Early Growth of Two Grass Species with Potential for Phytostabilization.
    Teodoro M, Clemente R, Ferrer-Bustins E, Martínez-Fernández D, Pilar Bernal M, Vítková M, Vítek P, Komárek M.
    Nanomaterials (Basel); 2020 Aug 05; 10(8):. PubMed ID: 32764467
    [Abstract] [Full Text] [Related]

  • 52. Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses.
    Amooaghaie R, Tabatabaei F, Ahadi AM.
    Ecotoxicol Environ Saf; 2015 Mar 05; 113():259-70. PubMed ID: 25528376
    [Abstract] [Full Text] [Related]

  • 53. Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil.
    Gil-Díaz M, Alonso J, Rodríguez-Valdés E, Gallego JR, Lobo MC.
    Sci Total Environ; 2017 Apr 15; 584-585():1324-1332. PubMed ID: 28190571
    [Abstract] [Full Text] [Related]

  • 54. Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil.
    Tilston EL, Collins CD, Mitchell GR, Princivalle J, Shaw LJ.
    Environ Pollut; 2013 Feb 15; 173():38-46. PubMed ID: 23202280
    [Abstract] [Full Text] [Related]

  • 55. Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles.
    Chang MC, Kang HY.
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May 15; 44(6):576-82. PubMed ID: 19337920
    [Abstract] [Full Text] [Related]

  • 56. Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species.
    Thomas PJ, Carpenter D, Boutin C, Allison JE.
    Chemosphere; 2014 Feb 15; 96():57-66. PubMed ID: 23978671
    [Abstract] [Full Text] [Related]

  • 57. Ecotoxicological impact of two soil remediation treatments in Lactuca sativa seeds.
    Rede D, Santos LHMLM, Ramos S, Oliva-Teles F, Antão C, Sousa SR, Delerue-Matos C.
    Chemosphere; 2016 Sep 15; 159():193-198. PubMed ID: 27289206
    [Abstract] [Full Text] [Related]

  • 58. Silver nanoparticles with different particle sizes enhance the allelopathic effects of Canada goldenrod on the seed germination and seedling development of lettuce.
    Wang C, Jiang K, Wu B, Zhou J, Lv Y.
    Ecotoxicology; 2018 Oct 15; 27(8):1116-1125. PubMed ID: 30083995
    [Abstract] [Full Text] [Related]

  • 59. Mitigation of Fe(0) nanoparticles toxicity to Trichosporon cutaneum by humic substances.
    Pádrová K, Maťátková O, Šiková M, Füzik T, Masák J, Čejková A, Jirků V.
    N Biotechnol; 2016 Jan 25; 33(1):144-52. PubMed ID: 26455640
    [Abstract] [Full Text] [Related]

  • 60. A new test system for unraveling the effects of soil components on the uptake and toxicity of silver nanoparticles (NM-300K) in simulated pore water.
    McKee MS, Köser J, Focke O, Filser J.
    Sci Total Environ; 2019 Jul 10; 673():613-621. PubMed ID: 30999102
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.