These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
106 related items for PubMed ID: 20550255
1. An indirect method for the characterization of locally reacting liners. Taktak M, Ville JM, Haddar M, Gabard G, Foucart F. J Acoust Soc Am; 2010 Jun; 127(6):3548-59. PubMed ID: 20550255 [Abstract] [Full Text] [Related]
3. Time-domain characterization of the acoustic damping of a perforated liner with bias flow. Zhong Z, Zhao D. J Acoust Soc Am; 2012 Jul; 132(1):271-81. PubMed ID: 22779476 [Abstract] [Full Text] [Related]
4. An improved multimodal method for sound propagation in nonuniform lined ducts. Bi W, Pagneux V, Lafarge D, Aurégan Y. J Acoust Soc Am; 2007 Jul; 122(1):280-90. PubMed ID: 17614488 [Abstract] [Full Text] [Related]
5. A straightforward method for wall impedance eduction in a flow duct. Jing X, Peng S, Sun X. J Acoust Soc Am; 2008 Jul; 124(1):227-34. PubMed ID: 18646970 [Abstract] [Full Text] [Related]
6. Experimental setup for measurement of acoustic power dissipation in lined ducts for higher order modes propagation with air mean-flow conditions. Ville JM, Foucart F. J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1742-8. PubMed ID: 14587576 [Abstract] [Full Text] [Related]
11. The scattering of sound by a long cylinder above an impedance boundary. Lui WK, Li KM. J Acoust Soc Am; 2010 Feb; 127(2):664-74. PubMed ID: 20136188 [Abstract] [Full Text] [Related]
12. Numerical inverse method predicting acoustic spinning modes radiated by a ducted fan from free-field test data. Lewy S. J Acoust Soc Am; 2008 Jul; 124(1):247-56. PubMed ID: 18646973 [Abstract] [Full Text] [Related]
13. Acoustic properties of multiple cavity resonance liner for absorbing higher-order duct modes. Zhou D, Wang X, Jing X, Sun X. J Acoust Soc Am; 2016 Aug; 140(2):1251. PubMed ID: 27586753 [Abstract] [Full Text] [Related]
14. Transmission characteristics of a tee-junction in a rectangular duct at higher-order modes. Lau SK, Leung KH. J Acoust Soc Am; 2009 Dec; 126(6):3028-39. PubMed ID: 20000916 [Abstract] [Full Text] [Related]
15. Characterization of condenser microphones under different environmental conditions for accurate speed of sound measurements with acoustic resonators. Guianvarc'h C, Gavioso RM, Benedetto G, Pitre L, Bruneau M. Rev Sci Instrum; 2009 Jul; 80(7):074901. PubMed ID: 19655971 [Abstract] [Full Text] [Related]
16. Lens-focused transducer modeling using an extended KLM model. Maréchal P, Levassort F, Tran-Huu-Hue LP, Lethiecq M. Ultrasonics; 2007 May; 46(2):155-67. PubMed ID: 17382986 [Abstract] [Full Text] [Related]
17. Bicylindrical model of Herschel-Quincke tube-duct system: theory and comparison with experiment and finite element method. Poirier B, Ville JM, Maury C, Kateb D. J Acoust Soc Am; 2009 Sep; 126(3):1151-62. PubMed ID: 19739729 [Abstract] [Full Text] [Related]
18. Excitation of acoustic waves from cylindrical polyvinylidene fluoride (PVDF) film confined in a concentric wall. Toda M. IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1653-9. PubMed ID: 18986955 [Abstract] [Full Text] [Related]
19. Bayesian-based estimation of acoustic surface impedance: Finite difference frequency domain approach. Bockman A, Fackler C, Xiang N. J Acoust Soc Am; 2015 Apr; 137(4):1658-66. PubMed ID: 25920818 [Abstract] [Full Text] [Related]
20. Ensemble averaged surface normal impedance of material using an in-situ technique: preliminary study using boundary element method. Otsuru T, Tomiku R, Din NB, Okamoto N, Murakami M. J Acoust Soc Am; 2009 Jun; 125(6):3784-91. PubMed ID: 19507960 [Abstract] [Full Text] [Related] Page: [Next] [New Search]