These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
144 related items for PubMed ID: 20552355
1. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii. Yao S, Mikkelsen MJ. Appl Microbiol Biotechnol; 2010 Sep; 88(1):199-208. PubMed ID: 20552355 [Abstract] [Full Text] [Related]
3. High efficiency hydrogen production from glucose/xylose by the ldh-deleted Thermoanaerobacterium strain. Li S, Lai C, Cai Y, Yang X, Yang S, Zhu M, Wang J, Wang X. Bioresour Technol; 2010 Nov; 101(22):8718-24. PubMed ID: 20637604 [Abstract] [Full Text] [Related]
4. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Bera AK, Sedlak M, Khan A, Ho NW. Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743 [Abstract] [Full Text] [Related]
6. The effect of carbon sources and lactate dehydrogenase deletion on 1,2-propanediol production in Escherichia coli. Berríos-Rivera SJ, San KY, Bennett GN. J Ind Microbiol Biotechnol; 2003 Jan; 30(1):34-40. PubMed ID: 12545384 [Abstract] [Full Text] [Related]
7. [Characterization of an acidotolerant, thermophilic Thermoanaerobacter sp. xyl-d with a high xylose conversion]. Zhang W, Ma S, Deng Y, Zhang H. Wei Sheng Wu Xue Bao; 2011 Nov 04; 51(11):1510-9. PubMed ID: 22260049 [Abstract] [Full Text] [Related]
8. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Hou J, Vemuri GN, Bao X, Olsson L. Appl Microbiol Biotechnol; 2009 Apr 04; 82(5):909-19. PubMed ID: 19221731 [Abstract] [Full Text] [Related]
9. Effect of nutrient limitation on product formation during continuous fermentation of xylose with Thermoanaerobacter ethanolicus JW200 Fe(7). Hild HM, Stuckey DC, Leak DJ. Appl Microbiol Biotechnol; 2003 Feb 04; 60(6):679-86. PubMed ID: 12664146 [Abstract] [Full Text] [Related]
11. Characterization of the impact of acetate and lactate on ethanolic fermentation by Thermoanaerobacter ethanolicus. He Q, Lokken PM, Chen S, Zhou J. Bioresour Technol; 2009 Dec 04; 100(23):5955-65. PubMed ID: 19608413 [Abstract] [Full Text] [Related]
13. Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli. Liu R, Liang L, Chen K, Ma J, Jiang M, Wei P, Ouyang P. Appl Microbiol Biotechnol; 2012 May 04; 94(4):959-68. PubMed ID: 22294432 [Abstract] [Full Text] [Related]
14. Effect of alternative NAD+-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant. Jain VK, Divol B, Prior BA, Bauer FF. Appl Microbiol Biotechnol; 2012 Jan 04; 93(1):131-41. PubMed ID: 21720823 [Abstract] [Full Text] [Related]
18. Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae. Zhang L, Tang Y, Guo ZP, Ding ZY, Shi GY. Biotechnol Lett; 2011 Jul 04; 33(7):1375-80. PubMed ID: 21400237 [Abstract] [Full Text] [Related]
19. Ethanol production from glucose and xylose by immobilized Thermoanaerobacter pentosaceus at 70 °C in an up-flow anaerobic sludge blanket (UASB) reactor. Sittijunda S, Tomás AF, Reungsang A, O-thong S, Angelidaki I. Bioresour Technol; 2013 Sep 04; 143():598-607. PubMed ID: 23845708 [Abstract] [Full Text] [Related]
20. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. Kuyper M, Winkler AA, van Dijken JP, Pronk JT. FEMS Yeast Res; 2004 Mar 04; 4(6):655-64. PubMed ID: 15040955 [Abstract] [Full Text] [Related] Page: [Next] [New Search]