These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
775 related items for PubMed ID: 20552605
21. Growth factor-mediated effects on chondrogenic differentiation of mesenchymal stem cells in 3D semi-IPN poly(vinyl alcohol)-poly(caprolactone) scaffolds. Mohan N, Nair PD, Tabata Y. J Biomed Mater Res A; 2010 Jul; 94(1):146-59. PubMed ID: 20128001 [Abstract] [Full Text] [Related]
22. Influence of perfusion on metabolism and matrix production by bovine articular chondrocytes in hydrogel scaffolds. Xu X, Urban JP, Tirlapur U, Wu MH, Cui Z, Cui Z. Biotechnol Bioeng; 2006 Apr 20; 93(6):1103-11. PubMed ID: 16470872 [Abstract] [Full Text] [Related]
23. [Experimental study on collagen hydrogel scaffolds for cartilage tissue engineering]. Li K, Guo L, Fan Y, Zhang X. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Nov 20; 26(11):1356-61. PubMed ID: 23230673 [Abstract] [Full Text] [Related]
24. Cellulose-based scaffold materials for cartilage tissue engineering. Müller FA, Müller L, Hofmann I, Greil P, Wenzel MM, Staudenmaier R. Biomaterials; 2006 Jul 20; 27(21):3955-63. PubMed ID: 16530823 [Abstract] [Full Text] [Related]
25. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Lee JE, Kim KE, Kwon IC, Ahn HJ, Lee SH, Cho H, Kim HJ, Seong SC, Lee MC. Biomaterials; 2004 Aug 20; 25(18):4163-73. PubMed ID: 15046906 [Abstract] [Full Text] [Related]
26. Morphology and function of ovine articular cartilage chondrocytes in 3-d hydrogel culture. Schagemann JC, Mrosek EH, Landers R, Kurz H, Erggelet C. Cells Tissues Organs; 2006 Aug 20; 182(2):89-97. PubMed ID: 16804299 [Abstract] [Full Text] [Related]
27. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Biotechnol Bioeng; 2006 Apr 20; 93(6):1152-63. PubMed ID: 16470881 [Abstract] [Full Text] [Related]
28. Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. Kisiday JD, Jin M, DiMicco MA, Kurz B, Grodzinsky AJ. J Biomech; 2004 May 20; 37(5):595-604. PubMed ID: 15046988 [Abstract] [Full Text] [Related]
29. Culture of chondrocytes in fibroin-hydrogel sponge. Aoki H, Tomita N, Morita Y, Hattori K, Harada Y, Sonobe M, Wakitani S, Tamada Y. Biomed Mater Eng; 2003 May 20; 13(4):309-16. PubMed ID: 14646046 [Abstract] [Full Text] [Related]
30. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering. Eglin D, Grad S, Gogolewski S, Alini M. J Biomed Mater Res A; 2010 Jan 20; 92(1):393-408. PubMed ID: 19191318 [Abstract] [Full Text] [Related]
31. [Chondrogenesis of passaged chondrocytes induced by different dynamic loads in bioreactor]. Wang N, Chen J, Zhang G, Chai W. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Jul 20; 27(7):786-92. PubMed ID: 24063164 [Abstract] [Full Text] [Related]
32. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold. Sha'ban M, Yoon SJ, Ko YK, Ha HJ, Kim SH, So JW, Idrus RB, Khang G. J Biomater Sci Polym Ed; 2008 Jul 20; 19(9):1219-37. PubMed ID: 18727862 [Abstract] [Full Text] [Related]
33. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. Li WJ, Danielson KG, Alexander PG, Tuan RS. J Biomed Mater Res A; 2003 Dec 15; 67(4):1105-14. PubMed ID: 14624495 [Abstract] [Full Text] [Related]
34. Engineering of large cartilaginous tissues through the use of microchanneled hydrogels and rotational culture. Buckley CT, Thorpe SD, Kelly DJ. Tissue Eng Part A; 2009 Nov 15; 15(11):3213-20. PubMed ID: 19374490 [Abstract] [Full Text] [Related]
35. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, Minami A, Monde K, Nishimura S. Biomaterials; 2005 Feb 15; 26(6):611-9. PubMed ID: 15282139 [Abstract] [Full Text] [Related]
36. Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering. Lee WK, Ichi T, Ooya T, Yamamoto T, Katoh M, Yui N. J Biomed Mater Res A; 2003 Dec 15; 67(4):1087-92. PubMed ID: 14624493 [Abstract] [Full Text] [Related]
37. A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology. Wang CC, Yang KC, Lin KH, Liu HC, Lin FH. Biomaterials; 2011 Oct 15; 32(29):7118-26. PubMed ID: 21724248 [Abstract] [Full Text] [Related]
38. Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials. Yamaoka H, Asato H, Ogasawara T, Nishizawa S, Takahashi T, Nakatsuka T, Koshima I, Nakamura K, Kawaguchi H, Chung UI, Takato T, Hoshi K. J Biomed Mater Res A; 2006 Jul 15; 78(1):1-11. PubMed ID: 16596585 [Abstract] [Full Text] [Related]
39. Inorganic-organic hybrid scaffolds for osteochondral regeneration. Munoz-Pinto DJ, McMahon RE, Kanzelberger MA, Jimenez-Vergara AC, Grunlan MA, Hahn MS. J Biomed Mater Res A; 2010 Jul 15; 94(1):112-21. PubMed ID: 20128006 [Abstract] [Full Text] [Related]
40. Platelet-rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CB1 and CB2. Lee HR, Park KM, Joung YK, Park KD, Do SH. J Control Release; 2012 May 10; 159(3):332-7. PubMed ID: 22366523 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]