These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


320 related items for PubMed ID: 20556303

  • 1. Low-temperature, simple and fast integration technique of microfluidic chips by using a UV-curable adhesive.
    Arayanarakool R, Le Gac S, van den Berg A.
    Lab Chip; 2010 Aug 21; 10(16):2115-21. PubMed ID: 20556303
    [Abstract] [Full Text] [Related]

  • 2. Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding.
    Díaz-González M, Baldi A.
    Anal Chem; 2012 Sep 18; 84(18):7838-44. PubMed ID: 22905798
    [Abstract] [Full Text] [Related]

  • 3. Water-assisted CO(2) laser ablated glass and modified thermal bonding for capillary-driven bio-fluidic application.
    Chung CK, Chang HC, Shih TR, Lin SL, Hsiao EJ, Chen YS, Chang EC, Chen CC, Lin CC.
    Biomed Microdevices; 2010 Feb 18; 12(1):107-14. PubMed ID: 19830566
    [Abstract] [Full Text] [Related]

  • 4. Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes.
    Nath P, Fung D, Kunde YA, Zeytun A, Branch B, Goddard G.
    Lab Chip; 2010 Sep 07; 10(17):2286-91. PubMed ID: 20593077
    [Abstract] [Full Text] [Related]

  • 5. Wax-bonding 3D microfluidic chips.
    Gong X, Yi X, Xiao K, Li S, Kodzius R, Qin J, Wen W.
    Lab Chip; 2010 Oct 07; 10(19):2622-7. PubMed ID: 20689865
    [Abstract] [Full Text] [Related]

  • 6. Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices.
    Hamad EM, Bilatto SE, Adly NY, Correa DS, Wolfrum B, Schöning MJ, Offenhäusser A, Yakushenko A.
    Lab Chip; 2016 Jan 07; 16(1):70-4. PubMed ID: 26627046
    [Abstract] [Full Text] [Related]

  • 7. Wafer-scale fabrication of glass-FEP-glass microfluidic devices for lipid bilayer experiments.
    Bomer JG, Prokofyev AV, van den Berg A, Le Gac S.
    Lab Chip; 2014 Dec 07; 14(23):4461-4. PubMed ID: 25284632
    [Abstract] [Full Text] [Related]

  • 8. Thermal assisted ultrasonic bonding method for poly(methyl methacrylate) (PMMA) microfluidic devices.
    Zhang Z, Wang X, Luo Y, He S, Wang L.
    Talanta; 2010 Jun 15; 81(4-5):1331-8. PubMed ID: 20441903
    [Abstract] [Full Text] [Related]

  • 9. Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps.
    Agirregabiria M, Blanco FJ, Berganzo J, Arroyo MT, Fullaondo A, Mayora K, Ruano-López JM.
    Lab Chip; 2005 May 15; 5(5):545-52. PubMed ID: 15856093
    [Abstract] [Full Text] [Related]

  • 10. A multilevel Lab on chip platform for DNA analysis.
    Marasso SL, Giuri E, Canavese G, Castagna R, Quaglio M, Ferrante I, Perrone D, Cocuzza M.
    Biomed Microdevices; 2011 Feb 15; 13(1):19-27. PubMed ID: 20827509
    [Abstract] [Full Text] [Related]

  • 11. Glass microstructure capping and bonding techniques.
    Mazurczyk R, Mansfield CD, Lygan M.
    Methods Mol Biol; 2013 Feb 15; 949():141-51. PubMed ID: 23329441
    [Abstract] [Full Text] [Related]

  • 12. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment.
    Tsao CW, Hromada L, Liu J, Kumar P, DeVoe DL.
    Lab Chip; 2007 Apr 15; 7(4):499-505. PubMed ID: 17389967
    [Abstract] [Full Text] [Related]

  • 13. Room temperature UV adhesive bonding of CE devices.
    Carroll S, Crain MM, Naber JF, Keynton RS, Walsh KM, Baldwin RP.
    Lab Chip; 2008 Sep 15; 8(9):1564-9. PubMed ID: 18818814
    [Abstract] [Full Text] [Related]

  • 14. A method for UV-bonding in the fabrication of glass electrophoretic microchips.
    Huang Z, Sanders JC, Dunsmor C, Ahmadzadeh H, Landers JP.
    Electrophoresis; 2001 Oct 15; 22(18):3924-9. PubMed ID: 11700722
    [Abstract] [Full Text] [Related]

  • 15. Fabrication of reversibly adhesive fluidic devices using magnetism.
    Rafat M, Raad DR, Rowat AC, Auguste DT.
    Lab Chip; 2009 Oct 21; 9(20):3016-9. PubMed ID: 19789760
    [Abstract] [Full Text] [Related]

  • 16. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI, Han KH.
    Methods Mol Biol; 2013 Oct 21; 949():169-84. PubMed ID: 23329443
    [Abstract] [Full Text] [Related]

  • 17. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ, Shih CY, Tai YC.
    Lab Chip; 2006 Jun 21; 6(6):803-10. PubMed ID: 16738734
    [Abstract] [Full Text] [Related]

  • 18. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization.
    Wang J, He Y, Xia H, Niu LG, Zhang R, Chen QD, Zhang YL, Li YF, Zeng SJ, Qin JH, Lin BC, Sun HB.
    Lab Chip; 2010 Aug 07; 10(15):1993-6. PubMed ID: 20508876
    [Abstract] [Full Text] [Related]

  • 19. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS, Shim MS, Choi NW.
    Lab Chip; 2006 Feb 07; 6(2):302-9. PubMed ID: 16450042
    [Abstract] [Full Text] [Related]

  • 20. Microfluidic probe: a new tool for integrating microfluidic environments and electronic wafer-probing.
    Routenberg DA, Reed MA.
    Lab Chip; 2010 Jan 07; 10(1):123-7. PubMed ID: 20024060
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.