These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


669 related items for PubMed ID: 20565078

  • 1. Pt monolayer on porous Pd-Cu alloys as oxygen reduction electrocatalysts.
    Shao M, Shoemaker K, Peles A, Kaneko K, Protsailo L.
    J Am Chem Soc; 2010 Jul 14; 132(27):9253-5. PubMed ID: 20565078
    [Abstract] [Full Text] [Related]

  • 2. Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction.
    Zhang J, Lima FH, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR.
    J Phys Chem B; 2005 Dec 08; 109(48):22701-4. PubMed ID: 16853957
    [Abstract] [Full Text] [Related]

  • 3. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction.
    Hong JW, Kang SW, Choi BS, Kim D, Lee SB, Han SW.
    ACS Nano; 2012 Mar 27; 6(3):2410-9. PubMed ID: 22360814
    [Abstract] [Full Text] [Related]

  • 4. Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis.
    Strasser P, Koh S, Greeley J.
    Phys Chem Chem Phys; 2008 Jul 07; 10(25):3670-83. PubMed ID: 18563228
    [Abstract] [Full Text] [Related]

  • 5. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction.
    Shao MH, Huang T, Liu P, Zhang J, Sasaki K, Vukmirovic MB, Adzic RR.
    Langmuir; 2006 Dec 05; 22(25):10409-15. PubMed ID: 17129009
    [Abstract] [Full Text] [Related]

  • 6. Mixed-metal pt monolayer electrocatalysts for enhanced oxygen reduction kinetics.
    Zhang J, Vukmirovic MB, Sasaki K, Nilekar AU, Mavrikakis M, Adzic RR.
    J Am Chem Soc; 2005 Sep 14; 127(36):12480-1. PubMed ID: 16144382
    [Abstract] [Full Text] [Related]

  • 7. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction.
    Sasaki K, Zhang L, Adzic RR.
    Phys Chem Chem Phys; 2008 Jan 07; 10(1):159-67. PubMed ID: 18075695
    [Abstract] [Full Text] [Related]

  • 8. Platinum-based oxygen reduction electrocatalysts.
    Wu J, Yang H.
    Acc Chem Res; 2013 Aug 20; 46(8):1848-57. PubMed ID: 23808919
    [Abstract] [Full Text] [Related]

  • 9. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction.
    Yang J, Yang J, Ying JY.
    ACS Nano; 2012 Nov 27; 6(11):9373-82. PubMed ID: 23061786
    [Abstract] [Full Text] [Related]

  • 10. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction.
    Lim B, Jiang M, Camargo PH, Cho EC, Tao J, Lu X, Zhu Y, Xia Y.
    Science; 2009 Jun 05; 324(5932):1302-5. PubMed ID: 19443738
    [Abstract] [Full Text] [Related]

  • 11. Facile synthesis of Pd-Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen.
    Zhang H, Jin M, Liu H, Wang J, Kim MJ, Yang D, Xie Z, Liu J, Xia Y.
    ACS Nano; 2011 Oct 25; 5(10):8212-22. PubMed ID: 21888409
    [Abstract] [Full Text] [Related]

  • 12. Effect of component distribution and nanoporosity in CuPt nanotubes on electrocatalysis of the oxygen reduction reaction.
    Guo H, Liu X, Bai C, Chen Y, Wang L, Zheng M, Dong Q, Peng DL.
    ChemSusChem; 2015 Feb 25; 8(3):486-94. PubMed ID: 25505002
    [Abstract] [Full Text] [Related]

  • 13. Electrochemical study on the adsorption of carbon oxides and oxidation of their adsorption products on platinum group metals and alloys.
    Siwek H, Lukaszewski M, Czerwiński A.
    Phys Chem Chem Phys; 2008 Jul 07; 10(25):3752-65. PubMed ID: 18563236
    [Abstract] [Full Text] [Related]

  • 14. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction.
    Zhang H, Jin M, Wang J, Li W, Camargo PH, Kim MJ, Yang D, Xie Z, Xia Y.
    J Am Chem Soc; 2011 Apr 20; 133(15):6078-89. PubMed ID: 21438596
    [Abstract] [Full Text] [Related]

  • 15. Kinetically controlled autocatalytic chemical process for bulk production of bimetallic core-shell structured nanoparticles.
    Taufany F, Pan CJ, Rick J, Chou HL, Tsai MC, Hwang BJ, Liu DG, Lee JF, Tang MT, Lee YC, Chen CI.
    ACS Nano; 2011 Dec 27; 5(12):9370-81. PubMed ID: 22047129
    [Abstract] [Full Text] [Related]

  • 16. PtSn intermetallic, core-shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation.
    Liu Z, Jackson GS, Eichhorn BW.
    Angew Chem Int Ed Engl; 2010 Apr 19; 49(18):3173-6. PubMed ID: 20340144
    [No Abstract] [Full Text] [Related]

  • 17. Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: potential for significantly improving properties.
    Ghosh T, Vukmirovic MB, DiSalvo FJ, Adzic RR.
    J Am Chem Soc; 2010 Jan 27; 132(3):906-7. PubMed ID: 20039609
    [Abstract] [Full Text] [Related]

  • 18. Nanoporous PtAg and PtCu alloys with hollow ligaments for enhanced electrocatalysis and glucose biosensing.
    Xu C, Liu Y, Su F, Liu A, Qiu H.
    Biosens Bioelectron; 2011 Sep 15; 27(1):160-6. PubMed ID: 21778046
    [Abstract] [Full Text] [Related]

  • 19. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles.
    Alayoglu S, Zavalij P, Eichhorn B, Wang Q, Frenkel AI, Chupas P.
    ACS Nano; 2009 Oct 27; 3(10):3127-37. PubMed ID: 19731934
    [Abstract] [Full Text] [Related]

  • 20. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying.
    Stephens IE, Bondarenko AS, Perez-Alonso FJ, Calle-Vallejo F, Bech L, Johansson TP, Jepsen AK, Frydendal R, Knudsen BP, Rossmeisl J, Chorkendorff I.
    J Am Chem Soc; 2011 Apr 13; 133(14):5485-91. PubMed ID: 21417329
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 34.